Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario Jacques is active.

Publication


Featured researches published by Mario Jacques.


Infection and Immunity | 2003

Characterization of the Novel Factor Paa Involved in the Early Steps of the Adhesion Mechanism of Attaching and Effacing Escherichia coli

Isabelle Batisson; Marie-Pierre Guimond; Francis Girard; Hongyan An; Chengru Zhu; Eric Oswald; John M. Fairbrother; Mario Jacques; Josée Harel

ABSTRACT Nonenterotoxigenic porcine Escherichia coli strains belonging to the serogroup O45 have been associated with postweaning diarrhea in swine and adhere to intestinal epithelial cells in a characteristic attaching and effacing (A/E) pattern. O45 porcine enteropathogenic E. coli (PEPEC) strain 86-1390 induces typical A/E lesions in a pig ileal explant model. Using TnphoA transposon insertion mutagenesis on strain 86-1390, we found a mutant that did not induce A/E lesions. The insertion was identified in a gene designated paa (porcine A/E-associated gene). Sequence analysis of paa revealed an open reading frame of 753 bp encoding a 27.6-kDa protein which displayed 100, 51.8, and 49% homology with Paa of enterohemorrhagic E. coli O157:H7 strains (EDL933 and Sakai), PEB3 of Campylobacter jejuni, and AcfC of Vibrio cholerae, respectively. Chromosomal localization studies indicated that the region containing paa was inserted between the yciD and yciE genes at about 28.3 min of the E. coli K-12 chromosome. The presence of paa and eae sequences in the porcine O45 strains is highly correlated with the A/E phenotype. However, the observation that three eae-positive but paa-negative PEPEC O45 strains were A/E negative provides further evidence for the importance of the paa gene in the A/E activity of O45 strains. As well, the complementation of the paa mutant restored the A/E activity of the 86-1390 strain, showing the involvement of Paa in PEPEC pathogenicity. These observations suggest that Paa contributes to the early stages of A/E E. coli virulence.


Animal Health Research Reviews | 2000

Actinobacillus pleuropneumoniae surface polysaccharides: their role in diagnosis and immunogenicity

J. Daniel Dubreuil; Mario Jacques; Khyali R. Mittal; Marcelo Gottschalk

Abstract Actinobacillus pleuropneumoniae is an important pig pathogen that is responsible for swine pleuropneumonia, a highly contagious respiratory infection. Knowledge of the importance, composition and structural determination of the major antigens involved in virulence provides crucial information that could lead to the development of a rationale for the production of specific serodiagnostic tools as well as vaccine development. Thus, efforts have been devoted to study mainly A. pleuropneumoniaevirulence determinants with special emphasis on the Apx toxins (for A. pleuropneumoniaeRTX toxins). In comparison, little attention has been given to the surface polysaccharides, which include capsular polysaccharides (CPS) and cell-wall lipopolysaccharides (LPS). Here, we review current knowledge on CPS and LPS of A. pleuropneumoniae used as diagnostic tools to monitor the infection and as immunogens for inclusion in vaccine preparations for animal protection.


Trends in Microbiology | 1996

Role of lipo-oligosaccharides and lipopolysaccharides in bacterial adherence

Mario Jacques

Lipo-oligosaccharides (LOS) and lipopolysaccharides (LPS) are major constituents of the outer membrane, and major antigenic and toxic components of Gram-negative bacteria. Although many diverse biological activities have been associated with LPS/LOS, their role in adherence to host cells has been recognized only recently.


Infection and Immunity | 2006

Identification of a Surface Protein of Streptococcus suis and Evaluation of Its Immunogenic and Protective Capacity in Pigs

Yuanyi Li; Gabriela Martinez; Marcelo Gottschalk; Sonia Lacouture; Philip Willson; J. Daniel Dubreuil; Mario Jacques; Josée Harel

ABSTRACT A Streptococcus suis surface protein reacting with convalescent-phase sera from pigs clinically infected by S. suis type 2 was identified. The apparent 110-kDa protein, designated Sao, exhibits typical features of membrane-anchored surface proteins of gram-positive bacteria, such as a signal sequence and an LPVTG membrane anchor motif. In spite of high identity with the partially sequenced genomes of S. suis Canadian strain 89/1591 and European strain P1/7, Sao does not share significant homology with other known sequences. However, a conserved avirulence domain that is often found in plant pathogens has been detected. Electron microscopy using an Sao-specific antiserum has confirmed the surface location of the Sao protein on S. suis. The Sao-specific antibody reacts with cell lysates of 28 of 33 S. suis serotypes and 25 of 26 serotype 2 isolates in immunoblots, suggesting its high conservation in S. suis species. The immunization of piglets with recombinant Sao elicits a significant humoral antibody response. However, the antibody response is not reflected in protection of pigs that are intratracheally challenged with a virulent strain in our conventional vaccination model.


Infection and Immunity | 2009

Host-pathogen interactions of Actinobacillus pleuropneumoniae with porcine lung and tracheal epithelial cells.

Eliane Auger; Vincent Deslandes; Mahendrasingh Ramjeet; Irazú Contreras; John H. E. Nash; Josée Harel; Marcelo Gottschalk; Martin Olivier; Mario Jacques

ABSTRACT Host-pathogen interactions are of great importance in understanding the pathogenesis of infectious microorganisms. We developed in vitro models to study the host-pathogen interactions of porcine respiratory tract pathogens using two immortalized epithelial cell lines, namely, the newborn pig trachea (NPTr) and St. Jude porcine lung (SJPL) cell lines. We first studied the interactions of Actinobacillus pleuropneumoniae, an important swine pathogen, using these models. Under conditions where cytotoxicity was absent or low, we showed that A. pleuropneumoniae adheres to both cell lines, stimulating the induction of NF-κB. The NPTr cells consequently secrete interleukin 8, while the SJPL cells do not, since they are deprived of the NF-κB p65 subunit. Cell death ultimately occurs by necrosis, not apoptosis. The transcriptomic profile of A. pleuropneumoniae was determined after contact with the porcine lung epithelial cells by using DNA microarrays. Genes such as tadB and rcpA, members of a putative adhesin locus, and a gene whose product has high homology to the Hsf autotransporter adhesin of Haemophilus influenzae were upregulated, as were the genes pgaBC, involved in biofilm biosynthesis, while capsular polysaccharide-associated genes were downregulated. The in vitro models also proved to be efficient with other swine pathogens, such as Actinobacillus suis, Haemophilus parasuis, and Pasteurella multocida. Our results demonstrate that interactions of A. pleuropneumoniae with host epithelial cells seem to involve complex cross talk which results in regulation of various bacterial genes, including some coding for putative adhesins. Furthermore, our data demonstrate the potential of these in vitro models in studying the host-pathogen interactions of other porcine respiratory tract pathogens.


Pathogenetics | 2015

Waterborne pathogens: detection methods and challenges.

Flor Yazmín Ramírez-Castillo; Abraham Loera-Muro; Mario Jacques; Philippe Garneau; Francisco Javier Avelar-González; Josée Harel; Alma L. Guerrero-Barrera

Waterborne pathogens and related diseases are a major public health concern worldwide, not only by the morbidity and mortality that they cause, but by the high cost that represents their prevention and treatment. These diseases are directly related to environmental deterioration and pollution. Despite the continued efforts to maintain water safety, waterborne outbreaks are still reported globally. Proper assessment of pathogens on water and water quality monitoring are key factors for decision-making regarding water distribution systems’ infrastructure, the choice of best water treatment and prevention waterborne outbreaks. Powerful, sensitive and reproducible diagnostic tools are developed to monitor pathogen contamination in water and be able to detect not only cultivable pathogens but also to detect the occurrence of viable but non-culturable microorganisms as well as the presence of pathogens on biofilms. Quantitative microbial risk assessment (QMRA) is a helpful tool to evaluate the scenarios for pathogen contamination that involve surveillance, detection methods, analysis and decision-making. This review aims to present a research outlook on waterborne outbreaks that have occurred in recent years. This review also focuses in the main molecular techniques for detection of waterborne pathogens and the use of QMRA approach to protect public health.


Animal Health Research Reviews | 2008

Actinobacillus pleuropneumoniae vaccines: from bacterins to new insights into vaccination strategies.

Mahendrasingh Ramjeet; Vincent Deslandes; Julien Gouré; Mario Jacques

Abstract With the growing emergence of antibiotic resistance and rising consumer demands concerning food safety, vaccination to prevent bacterial infections is of increasing relevance. Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, a respiratory disease leading to severe economic losses in the swine industry. Despite all the research and trials that were performed with A. pleuropneumoniae vaccination in the past, a safe vaccine that offers complete protection against all serotypes has yet not reached the market. However, recent advances made in the identification of new potential vaccine candidates and in the targeting of specific immune responses, give encouraging vaccination perspectives. Here, we review past and current knowledge on A. pleuropneumoniae vaccines as well as the newly available genomic tools and vaccination strategies that could be useful in the design of an efficient vaccine against A. pleuropneumoniae infection.


Veterinary Research | 2010

Effects of growth conditions on biofilm formation by Actinobacillus pleuropneumoniae

Josée Labrie; Geneviève Pelletier-Jacques; Vincent Deslandes; Mahendrasingh Ramjeet; Eliane Auger; John H. E. Nash; Mario Jacques

Biofilm formation is an important virulence trait of many bacterial pathogens. It has been reported in the literature that only two of the reference strains of the swine pathogen Actinobacillus pleuropneumoniae, representing serotypes 5b and 11, were able to form biofilm in vitro. In this study, we compared biofilm formation by the serotype 1 reference strain S4074 of A. pleuropneumoniae grown in five different culture media. We observed that strain S4074 of A. pleuropneumoniae is able to form biofilms after growth in one of the culture conditions tested brain heart infusion (BHI medium, supplier B). Confocal laser scanning microscopy using a fluorescent probe specific to the poly-N-acetylglucosamine (PGA) polysaccharide further confirmed biofilm formation. In accordance, biofilm formation was susceptible to dispersin B, a PGA hydrolase. Transcriptional profiles of A. pleuropneumoniae S4074 following growth in BHI-B, which allowed a robust biofilm formation, and in BHI-A, in which only a slight biofilm formation was observed, were compared. Genes such as tadC, tadD, genes with homology to autotransporter adhesins as well as genes pgaABC involved in PGA biosynthesis and genes involved in zinc transport were up-regulated after growth in BHI-B. Interestingly, biofilm formation was inhibited by zinc, which was found to be more present in BHI-A (no or slight biofilm) than in BHI-B. We also observed biofilm formation in reference strains representing serotypes 3, 4, 5a, 12 and 14 as well as in 20 of the 37 fresh field isolates tested. Our data indicate that A. pleuropneumoniae has the ability to form biofilms under appropriate growth conditions and transition from a biofilm-positive to a biofilm-negative phenotype was reversible.


Animal Health Research Reviews | 2010

Biofilm formation in bacterial pathogens of veterinary importance

Mario Jacques; Virginia Aragon; Yannick D. N. Tremblay

Abstract Bacterial biofilms are structured communities of bacterial cells enclosed in a self-produced polymer matrix that is attached to a surface. Biofilms protect and allow bacteria to survive and thrive in hostile environments. Bacteria within biofilms can withstand host immune responses, and are much less susceptible to antibiotics and disinfectants when compared with their planktonic counterparts. The ability to form biofilms is now considered a universal attribute of micro-organisms. Diseases associated with biofilms require novel methods for their prevention, diagnosis and treatment; this is largely due to the properties of biofilms. Surprisingly, biofilm formation by bacterial pathogens of veterinary importance has received relatively little attention. Here, we review the current knowledge of bacterial biofilms as well as studies performed on animal pathogens.


BMC Genomics | 2007

Transcriptional profiling of Actinobacillus pleuropneumoniae under iron-restricted conditions

Vincent Deslandes; John H. E. Nash; Josée Harel; James W. Coulton; Mario Jacques

BackgroundTo better understand effects of iron restriction on Actinobacillus pleuropneumoniae and to identify new potential vaccine targets, we conducted transcript profiling studies using a DNA microarray containing all 2025 ORFs of the genome of A. pleuropneumoniae serotype 5b strain L20. This is the first study involving the use of microarray technology to monitor the transcriptome of A. pleuropneumoniae grown under iron restriction.ResultsUpon comparing growth of this pathogen in iron-sufficient versus iron-depleted medium, 210 genes were identified as being differentially expressed. Some genes (92) were identified as being up-regulated; many have confirmed or putative roles in iron acquisition, such as the genes coding for two TonB energy-transducing proteins and the hemoglobin receptor HgbA. Transcript profiling also led to identification of some new iron acquisition systems of A. pleuropneumoniae. Genes coding for a possible Yfe system (yfeABCD), implicated in the acquisition of chelated iron, were detected, as well as genes coding for a putative enterobactin-type siderophore receptor system. ORFs for homologs of the HmbR system of Neisseria meningitidis involved in iron acquisition from hemoglobin were significantly up-regulated. Down-regulated genes included many that encode proteins containing Fe-S clusters or that use heme as a cofactor. Supplementation of the culture medium with exogenous iron re-established the expression level of these genes.ConclusionWe have used transcriptional profiling to generate a list of genes showing differential expression during iron restriction. This strategy enabled us to gain a better understanding of the metabolic changes occurring in response to this stress. Many new potential iron acquisition systems were identified, and further studies will have to be conducted to establish their role during iron restriction.

Collaboration


Dive into the Mario Jacques's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josée Harel

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Josée Labrie

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl A. Gagnon

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge