Josef Madl
University of Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Josef Madl.
Journal of Biological Chemistry | 2008
Martin Muik; Irene Frischauf; Isabella Derler; Marc Fahrner; Judith Bergsmann; Petra Eder; Rainer Schindl; Clemens Hesch; Bernhard Polzinger; Reinhard Fritsch; Heike Kahr; Josef Madl; Hermann J. Gruber; Klaus Groschner; Christoph Romanin
STIM1 and ORAI1 (also termed CRACM1) are essential components of the classical calcium release-activated calcium current; however, the mechanism of the transmission of information of STIM1 to the calcium release-activated calcium/ORAI1 channel is as yet unknown. Here we demonstrate by Förster resonance energy transfer microscopy a dynamic coupling of STIM1 and ORAI1 that culminates in the activation of Ca2+ entry. Förster resonance energy transfer imaging of living cells provided insight into the time dependence of crucial events of this signaling pathway comprising Ca2+ store depletion, STIM1 multimerization, and STIM1-ORAI1 interaction. Accelerated store depletion allowed resolving a significant time lag between STIM1-STIM1 and STIM1-ORAI1 interactions. Store refilling reversed both STIM1 multimerization and STIM1-ORAI1 interaction. The cytosolic STIM1 C terminus itself was able, in vitro as well as in vivo, to associate with ORAI1 and to stimulate channel function, yet without ORAI1-STIM1 cluster formation. The dynamic interaction occurred via the C terminus of ORAI1 that includes a putative coiled-coil domain structure. An ORAI1 C terminus deletion mutant as well as a mutant (L273S) with impeded coiled-coil domain formation lacked both interaction as well as functional communication with STIM1 and failed to generate Ca2+ inward currents. An N-terminal deletion mutant of ORAI1 as well as the ORAI1 R91W mutant linked to severe combined immune deficiency syndrome was similarly impaired in terms of current activation despite being able to interact with STIM1. Hence, the C-terminal coiled-coil motif of ORAI1 represents a key domain for dynamic coupling to STIM1.
Journal of Biological Chemistry | 2010
Josef Madl; Julian Weghuber; Reinhard Fritsch; Isabella Derler; Marc Fahrner; Irene Frischauf; Barbara Lackner; Christoph Romanin; Gerhard J. Schütz
Store-operated calcium entry is essential for many signaling processes in nonexcitable cells. The best studied store-operated calcium current is the calcium release-activated calcium (CRAC) current in T-cells and mast cells, with Orai1 representing the essential pore forming subunit. Although it is known that functional CRAC channels in store-depleted cells are composed of four Orai1 subunits, the stoichiometric composition in quiescent cells is still discussed controversially: both a tetrameric and a dimeric stoichiometry of resting state Orai1 have been reported. We obtained here robust and similar FRET values on labeled tandem repeat constructs of Orai1 before and after store depletion, suggesting an unchanged tetrameric stoichiometry. Moreover, we directly visualized the stoichiometry of mobile Orai1 channels in live cells using a new single molecule recording modality that combines single molecule tracking and brightness analysis. By alternating imaging and photobleaching pulses, we recorded trajectories of single, fluorescently labeled Orai1 channels, with each trajectory consisting of bright and dim segments, corresponding to higher and lower numbers of colocalized active GFP label. The according brightness values were used for global fitting and statistical analysis, yielding a tetrameric subunit composition of mobile Orai1 channels in resting cells.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Thorsten Eierhoff; Björn Bastian; Roland Thuenauer; Josef Madl; Aymeric Audfray; Sahaja Aigal; Samuel Juillot; Gustaf E. Rydell; Stefan Müller; Sophie de Bentzmann; Anne Imberty; Christian Fleck; Winfried Römer
Significance Entry of bacteria into host cells critically depends on their proper engulfment by the plasma membrane. So far, actin polymerization has been described as a major driving force in this process. However, our study reveals that the interaction of the bacterial surface lectin LecA with the host cell glycosphingolipid Gb3 is fully sufficient to promote engulfment of Pseudomonas aeruginosa, whereas actin polymerization is dispensable. Hence, the formation of a “lipid zipper” represents a previously unidentified mechanism of bacterial uptake and demonstrates that bacterial pathogens have evolved lipid-based invasion strategies that may function in addition to protein receptor-based ones. Furthermore, by identifying the LecA/Gb3 interaction as the major invasion-promoting factor, our study provides new targets for drugs that may prevent bacterial invasion and dissemination. Glycosphingolipids are important structural constituents of cellular membranes. They are involved in the formation of nanodomains (“lipid rafts”), which serve as important signaling platforms. Invasive bacterial pathogens exploit these signaling domains to trigger actin polymerization for the bending of the plasma membrane and the engulfment of the bacterium—a key process in bacterial uptake. However, it is unknown whether glycosphingolipids directly take part in the membrane invagination process. Here, we demonstrate that a “lipid zipper,” which is formed by the interaction between the bacterial surface lectin LecA and its cellular receptor, the glycosphingolipid Gb3, triggers plasma membrane bending during host cell invasion of the bacterium Pseudomonas aeruginosa. In vitro experiments with Gb3-containing giant unilamellar vesicles revealed that LecA/Gb3-mediated lipid zippering was sufficient to achieve complete membrane engulfment of the bacterium. In addition, theoretical modeling elucidated that the adhesion energy of the LecA–Gb3 interaction is adequate to drive the engulfment process. In cellulo experiments demonstrated that inhibition of the LecA/Gb3 lipid zipper by either lecA knockout, Gb3 depletion, or application of soluble sugars that interfere with LecA binding to Gb3 significantly lowered P. aeruginosa uptake by host cells. Of note, membrane engulfment of P. aeruginosa occurred independently of actin polymerization, thus corroborating that lipid zippering alone is sufficient for this crucial first step of bacterial host-cell entry. Our study sheds new light on the impact of glycosphingolipids in the cellular invasion of bacterial pathogens and provides a mechanistic explication of the initial uptake processes.
The Journal of Allergy and Clinical Immunology | 2014
Heiko Sic; Helene Kraus; Josef Madl; Karl Andreas Flittner; Audrey Lilly von Münchow; Kathrin Pieper; Marta Rizzi; Anne Kathrin Kienzler; Korcan Ayata; Sebastian Rauer; Burkhard Kleuser; Ulrich Salzer; Meike Burger; Katja Zirlik; Vassilios Lougaris; Alessandro Plebani; Winfried Römer; Christoph Loeffler; Samantha Scaramuzza; Anna Villa; Bodo Grimbacher; Hermann Eibel
BACKGROUNDnFive different G protein-coupled sphingosine-1-phosphate (S1P) receptors (S1P1-S1P5) regulate a variety of physiologic and pathophysiologic processes, including lymphocyte circulation, multiple sclerosis (MS), and cancer. Although B-lymphocyte circulation plays an important role in these processes and is essential for normal immune responses, little is known about S1P receptors in human B cells.nnnOBJECTIVEnTo explore their function and signaling, we studied B-cell lines and primary B cells from control subjects, patients with leukemia, patients with S1P receptor inhibitor-treated MS, and patients with primary immunodeficiencies.nnnMETHODSnS1P receptor expression was analyzed by using multicolor immunofluorescence microscopy and quantitative PCR. Transwell assays were used to study cell migration. S1P receptor internalization was visualized by means of time-lapse imaging with fluorescent S1P receptor fusion proteins expressed by using lentiviral gene transfer. B-lymphocyte subsets were characterized by means of flow cytometry and immunofluorescence microscopy.nnnRESULTSnShowing that different B-cell populations express different combinations of S1P receptors, we found that S1P1 promotes migration, whereas S1P4 modulates and S1P2 inhibits S1P1 signals. Expression of CD69 in activated B lymphocytes and B cells from patients with chronic lymphocytic leukemia inhibited S1P-induced migration. Studying B-cell lines, normal B lymphocytes, and B cells from patients with primary immunodeficiencies, we identified Bruton tyrosine kinase, β-arrestin 2, LPS-responsive beige-like anchor protein, dedicator of cytokinesis 8, and Wiskott-Aldrich syndrome protein as critical signaling components downstream of S1P1.nnnCONCLUSIONnThus S1P receptor signaling regulates human B-cell circulation and might be a factor contributing to the pathology of MS, chronic lymphocytic leukemia, and primaryxa0immunodeficiencies.
Cancer Research | 2016
Venugopal Rao Mittapalli; Josef Madl; Stefanie Löffek; Dimitra Kiritsi; Johannes S. Kern; Winfried Römer; Alexander Nyström; Leena Bruckner-Tuderman
Recessive dystrophic epidermolysis bullosa (RDEB) is a genetic skin fragility disorder characterized by injury-driven blister formation, progressive soft-tissue fibrosis, and a highly elevated risk of early-onset aggressive cutaneous squamous cell carcinoma (cSCC). However, the mechanisms underlying the unusually rapid progression of RDEB to cSCC are unknown. In this study, we investigated the contribution of injury-induced skin alterations to cSCC development by using a genetic model of RDEB and organotypic skin cultures. Analysis of RDEB patient samples suggested that premalignant changes to the dermal microenvironment drive tumor progression, which led us to subject a collagen VII hypomorphic mouse model of RDEB to chemical carcinogenesis. Carcinogen-treated RDEB mice developed invasive tumors phenocopying human RDEB-cSCC, whereas wild-type mice formed papillomas, indicating that the aggressiveness of RDEB-cSCC is mutation-independent. The inherent structural instability of the RDEB dermis, combined with repeated injury, increased the bioavailability of TGFβ, which promoted extracellular matrix production, cross-linking, thickening of dermal fibrils, and tissue stiffening. The biophysically altered dermis increased myofibroblast activity and integrin β1/pFAK/pAKT mechanosignaling in tumor cells, further demonstrating that cSCC progression is governed by pre-existing injury-driven changes in the RDEB tissue microenvironment. Treatment of three-dimensional organotypic RDEB skin cultures with inhibitors of TGFβ signaling, lysyl oxidase, or integrin β1-mediated mechanosignaling reduced or bypassed tissue stiffness and limited tumor cell invasion. Collectively, these findings provide a new mechanism by which RDEB tissue becomes malignant and offer new druggable therapeutic targets to prevent cSCC onset.
Advances in Experimental Medicine and Biology | 2012
Isabella Derler; Josef Madl; Gerhard J. Schütz; Christoph Romanin
Ca(2+) release activated Ca(2+) (CRAC) channels mediate robust Ca(2+) influx when the endoplasmic reticulum Ca(2+) stores are depleted. This essential process for T-cell activation as well as degranulation of mast cells involves the Ca(2+) sensor STIM1, located in the endoplasmic reticulum and the Ca(2+) selective Orai1 channel in the plasma membrane. Our review describes the CRAC signaling pathway, the activation of which is initiated by a drop in the endoplasmic Ca(2+) level sensed by STIM1. This in term induces multimerisation and puncta-formation of STIM1 proteins is followed by their coupling to and activation of Orai channels. Consequently Ca(2+) entry is triggered through the Orai pore into the cytosol with subsequent closure of the channel by Ca(2+)-dependent inactivation. We will portray a mechanistic view of the events coupling STIM1 to Orai activation based on their structure and biophysics.
Current Nanoscience | 2007
Andreas Ebner; Josef Madl; Ferry Kienberger; Lilia A. Chtcheglova; Theeraporn Puntheeranurak; Rong Zhu; Jilin Tang; Hermann J. Gruber; Gerhard J. Schütz; Peter Hinterdorfer
Atomic force microscopy (AFM) enables high resolution topographic imaging of biological samples under near-physiological conditions. Therefore, the AFM is optimally suited for investigation of biological membranes and cell surfaces, as exemplified by studies on bacterial S-layers, purple membranes and cultured living cells. Topographic imaging allows visualizing single proteins and protein assemblies in native membranes, as well as substructures of live cells, such as cytoskeletal architecture. In addition to high-resolution imaging, the measurement of mechanical forces yields detailed insight into structure-function relationships of molecular processes in their native environment. In molecular recognition force microscopy, interaction forces between tip-bound ligands and membrane-embedded receptors can be studied under well-controlled buffer conditions and effectors concentrations. In case of low lateral density and inhomogeneous distribution of the target molecules in a cell membrane, fluorescence microscopy can help to guide the AFM tip to the membrane proteins of interest, which can subsequently be investigated by molecular recognition force microscopy.
Biochimica et Biophysica Acta | 2011
Julian Weghuber; Michael C. Aichinger; Mario Brameshuber; Stefan Wieser; Verena Ruprecht; Birgit Plochberger; Josef Madl; Andreas Horner; Siegfried Reipert; Karl Lohner; Tamás Henics; Gerhard J. Schütz
Cationic antimicrobial peptides (CAMPs) selectively target bacterial membranes by electrostatic interactions with negatively charged lipids. It turned out that for inhibition of microbial growth a high CAMP membrane concentration is required, which can be realized by the incorporation of hydrophobic groups within the peptide. Increasing hydrophobicity, however, reduces the CAMP selectivity for bacterial over eukaryotic host membranes, thereby causing the risk of detrimental side-effects. In this study we addressed how cationic amphipathic peptides—in particular a CAMP with Lysine–Leucine–Lysine repeats (termed KLK)—affect the localization and dynamics of molecules in eukaryotic membranes. We found KLK to selectively inhibit the endocytosis of a subgroup of membrane proteins and lipids by electrostatically interacting with negatively charged sialic acid moieties. Ultrastructural characterization revealed the formation of membrane invaginations representing fission or fusion intermediates, in which the sialylated proteins and lipids were immobilized. Experiments on structurally different cationic amphipathic peptides (KLK, 6-MO-LF11-322 and NK14-2) indicated a cooperation of electrostatic and hydrophobic forces that selectively arrest sialylated membrane constituents.
ChemBioChem | 2016
Nicolai Stuhr-Hansen; Josef Madl; Sarah Villringer; Ulrika Aili; Winfried Römer; Ola Blixt
Synthetic minimal membrane systems are extremely useful for better understanding of complex cellular structures and cell surface processes. We have developed a facile method for synthesis of cholesterylated peptides, each bearing a carbohydrate moiety and a fluorescent tag. The position of the cholesterol moiety on the peptide can be controlled by using a new Fmoc‐protected cholesterol‐triazole‐lysine group, which we constructed by means of solid‐phase peptide synthesis. We succeeded in integrating the glyco modules into giant unilamellar vesicles by electroformation or infusion in buffer solution. The glyco‐decorated liposomes were recognized by a lectin and had unique topological membrane features. In conclusion, this work is a proof of principle for the functionalization of artificial membranes with a primitive synthetic glycocalyx useful for studying carbohydrate–protein interactions on a simplified cell‐like membrane surface.
Biochimica et Biophysica Acta | 2016
Catherine Cott; Roland Thuenauer; Alessia Landi; Katja Kühn; Samuel Juillot; Anne Imberty; Josef Madl; Thorsten Eierhoff; Winfried Römer
Pseudomonas aeruginosa is an opportunistic pathogen that induces severe lung infections such as ventilator-associated pneumonia and acute lung injury. Under these conditions, the bacterium diminishes epithelial integrity and inhibits tissue repair mechanisms, leading to persistent infections. Understanding the involved bacterial virulence factors and their mode of action is essential for the development of new therapeutic approaches. In our study we discovered a so far unknown effect of the P. aeruginosa lectin LecB on host cell physiology. LecB alone was sufficient to attenuate migration and proliferation of human lung epithelial cells and to induce transcriptional activity of NF-κB. These effects are characteristic of impaired tissue repair. Moreover, we found a strong degradation of β-catenin, which was partially recovered by the proteasome inhibitor lactacystin. In addition, LecB induced loss of cell–cell contacts and reduced expression of the β-catenin targets c-myc and cyclin D1. Blocking of LecB binding to host cell plasma membrane receptors by soluble l-fucose prevented these changes in host cell behavior and signaling, and thereby provides a powerful strategy to suppress LecB function. Our findings suggest that P. aeruginosa employs LecB as a virulence factor to induce β-catenin degradation, which then represses processes that are directly linked to tissue recovery.