Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph A. Maldjian is active.

Publication


Featured researches published by Joseph A. Maldjian.


NeuroImage | 2004

Precentral gyrus discrepancy in electronic versions of the Talairach atlas.

Joseph A. Maldjian; Paul J. Laurienti; Jonathan H. Burdette

Electronic versions of the atlas of Talairach and Tournoux, including the Talairach Daemon and the official versions published by Thieme, contain a discrepant region of the precentral gyrus on axial slice +35 mm that extends far forward into the frontal lobe. This area is anatomically incorrect and internally inconsistent within the digital atlas software applications using their multiplanar cross-referencing tools. By cross-referencing the axial, sagittal, and coronal plates from the original printed atlas, we demonstrate that the discrepant area should be labeled middle frontal gyrus. The mislabeled portion encompasses a 3 x 1.5-cm region in the axial plane and has significant implications for sensorimotor studies that rely on the digital atlases for anatomic labeling.


Stroke | 2000

Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling.

Julio A. Chalela; David C. Alsop; Julio Gonzalez-Atavales; Joseph A. Maldjian; Scott E. Kasner; John A. Detre

BACKGROUND AND PURPOSE Continuous arterial spin-labeled perfusion MRI (CASL-PI) uses electromagnetically labeled arterial blood water as a diffusible tracer to noninvasively measure cerebral blood flow (CBF). We hypothesized that CASL-PI could detect perfusion deficits and perfusion/diffusion mismatches and predict outcome in acute ischemic stroke. METHODS We studied 15 patients with acute ischemic stroke within 24 hours of symptom onset. With the use of a 6-minute imaging protocol, CASL-PI was measured at 1.5 T in 8-mm contiguous supratentorial slices with a 3.75-mm in-plane resolution. Diffusion-weighted images were also obtained. Visual inspection for perfusion deficits, perfusion/diffusion mismatches, and effects of delayed arterial transit was performed. CBF in predetermined vascular territories was quantified by transformation into Talairach space. Regional CBF values were correlated with National Institutes of Health Stroke Scale (NIHSS) score on admission and Rankin Scale (RS) score at 30 days. RESULTS Interpretable CASL-PI images were obtained in all patients. Perfusion deficits were consistent with symptoms and/or diffusion-weighted imaging abnormalities. Eleven patients had hypoperfusion, 3 had normal perfusion, and 1 had relative hyperperfusion. Perfusion/diffusion mismatches were present in 8 patients. Delayed arterial transit effect was present in 7 patients; serial imaging in 2 of them showed that the delayed arterial transit area did not succumb to infarction. CBF in the affected hemisphere correlated with NIHSS and RS scores (P=0.037 and P=0.003, Spearman rank correlation). The interhemispheric percent difference in middle cerebral artery CBF correlated with NIHSS and RS scores (P=0.007 and P=0.0002, respectively). CONCLUSIONS CASL-PI provides rapid noninvasive multislice imaging in acute ischemic stroke. It depicts perfusion deficits and perfusion/diffusion mismatches and quantifies regional CBF. CASL-PI CBF asymmetries correlate with severity and outcome. Delayed arterial transit effects may indicate collateral flow.


Brain and Language | 2000

An fMRI study of sex differences in regional activation to a verbal and a spatial task.

Ruben C. Gur; David C. Alsop; David C. Glahn; Richard G. Petty; Charlie L. Swanson; Joseph A. Maldjian; Bruce I. Turetsky; John A. Detre; James C. Gee; Raquel E. Gur

Sex differences in cognitive performance have been documented, women performing better on some phonological tasks and men on spatial tasks. An earlier fMRI study suggested sex differences in distributed brain activation during phonological processing, with bilateral activation seen in women while men showed primarily left-lateralized activation. This blood oxygen level-dependent fMRI study examined sex differences (14 men, 13 women) in activation for a spatial task (judgment of line orientation) compared to a verbal-reasoning task (analogies) that does not typically show sex differences. Task difficulty was manipulated. Hypothesized ROI-based analysis documented the expected left-lateralized changes for the verbal task in the inferior parietal and planum temporal regions in both men and women, but only men showed right-lateralized increase for the spatial task in these regions. Image-based analysis revealed a distributed network of cortical regions activated by the tasks, which consisted of the lateral frontal, medial frontal, mid-temporal, occipitoparietal, and occipital regions. The activation was more left lateralized for the verbal and more right for the spatial tasks, but men also showed some left activation for the spatial task, which was not seen in women. Increased task difficulty produced more distributed activation for the verbal and more circumscribed activation for the spatial task. The results suggest that failure to activate the appropriate hemisphere in regions directly involved in task performance may explain certain sex differences in performance. They also extend, for a spatial task, the principle that bilateral activation in a distributed cognitive system underlies sex differences in performance.


Lancet Neurology | 2011

Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy

Lenore J. Launer; Michael I. Miller; Jeff D. Williamson; Hertzel C. Gerstein; Anne M. Murray; Mark D. Sullivan; Karen R. Horowitz; Jingzhong Ding; Santica M. Marcovina; Laura Lovato; James Lovato; Karen L. Margolis; Patrick J. O'Connor; Edward W. Lipkin; Joy Hirsch; Laura H. Coker; Joseph A. Maldjian; Jeffrey L. Sunshine; Charles L. Truwit; Christos Davatzikos; R. Nick Bryan

Background Persons with type 2 diabetes (T2D) are at risk for cognitive impairment and brain atrophy. The ACCORD Memory in Diabetes (MIND) Study investigated whether persons randomized to an intensive glycaemic therapeutic strategy targeting HbA1c to <6% had better cognitive function and a larger brain volume at 40 months than persons randomized to a standard strategy targeting HbA1c to 7%–7.9%.BACKGROUND People with type 2 diabetes are at risk of cognitive impairment and brain atrophy. We aimed to compare the effects on cognitive function and brain volume of intensive versus standard glycaemic control. METHODS The Memory in Diabetes (MIND) study was done in 52 clinical sites in North America as part of Action to Control Cardiovascular Risk in Diabetes (ACCORD), a double two-by-two factorial parallel group randomised trial. Participants (aged 55-80 years) with type 2 diabetes, high glycated haemoglobin A(1c) (HbA(1c)) concentrations (>7·5%; >58 mmol/mol), and a high risk of cardiovascular events were randomly assigned to receive intensive glycaemic control targeting HbA(1c) to less than 6·0% (42 mmol/mol) or a standard strategy targeting HbA(1c) to 7·0-7·9% (53-63 mmol/mol). Randomisation was via a centralised web-based system and treatment allocation was not masked from clinic staff or participants. We assessed our cognitive primary outcome, the Digit Symbol Substitution Test (DSST) score, at baseline and at 20 and 40 months. We assessed total brain volume (TBV), our primary brain structure outcome, with MRI at baseline and 40 months in a subset of participants. We included all participants with follow-up data in our primary analyses. In February, 2008, raised mortality risk led to the end of the intensive treatment and transition of those participants to standard treatment. We tested our cognitive function hypotheses with a mixed-effects model that incorporated information from both the 20 and 40 month outcome measures. We tested our MRI hypotheses with an ANCOVA model that included intracranial volume and factors used to stratify randomisation. This study is registered with ClinicalTrials.gov, number NCT00182910. FINDINGS We consecutively enrolled 2977 patients (mean age 62·5 years; SD 5·8) who had been randomly assigned to treatment groups in the ACCORD study. Our primary cognitive analysis was of patients with a 20-month or 40-month DSST score: 1378 assigned to receive intensive treatment and 1416 assigned to receive standard treatment. Of the 614 patients with a baseline MRI, we included 230 assigned to receive intensive treatment and 273 assigned to receive standard treatment in our primary MRI analysis at 40 months. There was no significant treatment difference in mean 40-month DSST score (difference in mean 0·32, 95% CI -0·28 to 0·91; p=0·2997). The intensive-treatment group had a greater mean TBV than the standard-treatment group (4·62, 2·0 to 7·3; p=0·0007). INTERPRETATION Although significant differences in TBV favoured the intensive treatment, cognitive outcomes were not different. Combined with the non-significant effects on other ACCORD outcomes, and increased mortality in participants in the intensive treatment group, our findings do not support the use of intensive therapy to reduce the adverse effects of diabetes on the brain in patients with similar characteristics to those of our participants. FUNDING US National Institute on Aging and US National Heart, Lung, and Blood Institute.


NeuroImage | 2007

Biological parametric mapping: A statistical toolbox for multimodality brain image analysis

Ramon Casanova; Ryali Srikanth; Aaron H. Baer; Paul J. Laurienti; Jonathan H. Burdette; Satoru Hayasaka; Lynn Flowers; Frank B. Wood; Joseph A. Maldjian

In recent years, multiple brain MR imaging modalities have emerged; however, analysis methodologies have mainly remained modality-specific. In addition, when comparing across imaging modalities, most researchers have been forced to rely on simple region-of-interest type analyses, which do not allow the voxel-by-voxel comparisons necessary to answer more sophisticated neuroscience questions. To overcome these limitations, we developed a toolbox for multimodal image analysis called biological parametric mapping (BPM), based on a voxel-wise use of the general linear model. The BPM toolbox incorporates information obtained from other modalities as regressors in a voxel-wise analysis, thereby permitting investigation of more sophisticated hypotheses. The BPM toolbox has been developed in Matlab with a user-friendly interface for performing analyses, including voxel-wise multimodal correlation, ANCOVA, and multiple regression. It has a high degree of integration with the SPM (statistical parametric mapping) software relying on it for visualization and statistical inference. Furthermore, statistical inference for a correlation field, rather than a widely used T-field, has been implemented in the correlation analysis for more accurate results. An example with in vivo data is presented, demonstrating the potential of the BPM methodology as a tool for multimodal image analysis.


Neurobiology of Aging | 2003

Age-related differences in brain activation during emotional face processing

Faith M. Gunning-Dixon; Ruben C. Gur; Alexis C Perkins; Lee Schroeder; Travis Turner; Bruce I. Turetsky; Robin M. Chan; James Loughead; David C. Alsop; Joseph A. Maldjian; Raquel E. Gur

Advancing age is associated with significant declines on neurobehavioral tasks that demand substantial mental effort. Functional imaging studies of mental abilities indicate that older adults faced with cognitive challenges tend to activate more regions, particularly frontal, than their younger counterparts, and that this recruitment of additional regions may reflect an attempt to compensate for inefficiency in cortical networks. The neural basis of emotion processing in aging has received little attention, and the goal of the present study was to use functional magnetic resonance imaging (fMRI) to examine the influence of age on facial emotion processing and activation in cortical and limbic regions. Participants (eight old and eight young adults) viewed facial displays of happiness, sadness, anger, fear, disgust, and neutrality in alternating blocks of emotion and age discrimination. We predicted that in response to an emotion discrimination task, older adults would demonstrate increased use of frontal regions relative to younger adults, perhaps combined with diminished use of regions recruited by younger adults, such as temporo-limbic regions. During the emotion discrimination task, young participants activated, visual, frontal and limbic regions, whereas older participants activated parietal, temporal and frontal regions. A direct comparison between emotion and age discrimination revealed that while younger adults activated the amygdala and surrounding temporo-limbic regions, older adults activated left frontal regions. The results of this study suggest that older adults may rely on different cortical networks to perceive emotional facial expressions than do their younger counterparts.


Neurobiology of Aging | 2006

Enhanced multisensory integration in older adults

Paul J. Laurienti; Jonathan H. Burdette; Joseph A. Maldjian; Mark T. Wallace

Information from the different senses is seamlessly integrated by the brain in order to modify our behaviors and enrich our perceptions. It is only through the appropriate binding and integration of information from the different senses that a meaningful and accurate perceptual gestalt can be generated. Although a great deal is known about how such cross-modal interactions influence behavior and perception in the adult, there is little knowledge as to the impact of aging on these multisensory processes. In the current study, we examined the speed of discrimination responses of aged and young individuals to the presentation of visual, auditory or combined visual-auditory stimuli. Although the presentation of multisensory stimuli speeded response times in both groups, the performance gain was significantly greater in the aged. Most strikingly, multisensory stimuli restored response times in the aged to those seen in young subjects to the faster of the two unisensory stimuli (i.e., visual). The current results suggest that despite the decline in sensory processing that accompanies aging, the use of multiple sensory channels may represent an effective compensatory strategy to overcome these unisensory deficits.


Neurosurgery | 1996

Functional Magnetic Resonance Imaging of Regional Brain Activity in Patients with Intracerebral Gliomas: Findings and Implications for Clinical Management

Scott W. Atlas; Robert S. Howard; Joseph A. Maldjian; David C. Alsop; John A. Detre; John Listerud; Mark D'Esposito; Kevin Judy; Eric L. Zager; Mark M. Stecker

Functional magnetic resonance imaging (fMRI) was performed in seven patients harboring intracerebral gliomas proven by histological analysis using a noninvasive blood oxygen level-dependent technique based on the documented discrepancy between regional increases in blood flow and oxygen use in response to regional brain activation. We combined fMRI with conventional magnetic resonance imaging (MRI) during motor or language task activation experiments to investigate the potential usefulness of mapping regional brain activity as part of treatment planning in patients with intracerebral gliomas, in whom preservation of areas of functioning brain tissue is critical. Statistical fMRI maps were generated and directly mapped onto conventional MRI scans obtained at the same session. Of the five patients cooperative enough to remain motionless for the study and perform the task, the location of activation in the primary sensorimotor cortex on the side of the tumor was clearly displaced compared with that in the normal contralateral hemisphere in four patients. Four of the five tumors in these patients showed fMRI activation within the periphery of (or immediately adjacent to) areas of presumed tumor based on spin-echo MRI. In some patients with neurological deficit, the extent of activation was reduced on the side of the tumor as compared with the normal hemisphere. The supplemental motor area and the ipsilateral primary motor cortex were also reproducibly activated during motor tasks. We conclude that blood oxygen level-dependent fMRI can localize areas of cortical function in patients undergoing treatment planning for gliomas so that therapy can be directed away from regions of residual function. Our preliminary data suggest that functioning cortex within or adjacent to tumor margins can be demonstrated, which may correspond to partial preservation of clinical function. Our preliminary data also suggest that there may be a quantifiable difference on fMRI between activation in tumor-bearing cortex and activation in corresponding normal cortex in the contralateral hemisphere. We postulate that the magnitude of this difference may relate to the severity of patient deficit.


Experimental Brain Research | 2004

Semantic congruence is a critical factor in multisensory behavioral performance

Paul J. Laurienti; Robert A. Kraft; Joseph A. Maldjian; Jonathan H. Burdette; Mark T. Wallace

It has repeatedly been demonstrated that the presence of multiple cues in different sensory modalities can enhance behavioral performance by speeding responses, increasing accuracy, and/or improving stimulus detection. Despite an extensive knowledge base as to how the spatial, temporal, and physical (e.g., intensity) characteristics of multisensory stimuli influence such enhancements, little is known about the role of semantic or contextual congruence. Our hypothesis was that semantically congruent multisensory stimuli would result in enhanced behavioral performance, and that semantically incongruent multisensory stimuli would result in either no enhancement or a decrement in behavioral performance. The results from a redundant cue feature discrimination task clearly demonstrate that congruent cross-modal stimulation improves behavioral performance. This effect is specific to the multisensory stimuli, as no improvements are seen in the presence of redundant unimodal stimulus pairs. In contrast, incongruent stimulus pairs result in behavioral decrements for both multisensory and paired unimodal stimuli. These results highlight that in addition to such simple stimulus features as space, time and relative effectiveness, the semantic content of a multisensory stimulus plays a critical role in determining how it is processed by the nervous system.


American Journal of Neuroradiology | 2008

Arterial Spin-Labeling in Routine Clinical Practice, Part 1: Technique and Artifacts

A. R. Deibler; Jeffrey M. Pollock; Robert A. Kraft; Huan Tan; Jonathan H. Burdette; Joseph A. Maldjian

SUMMARY: The routine use of arterial spin-labeling (ASL) in a clinical population has led to the depiction of diverse brain pathologic features. Unique challenges in the acquisition, postprocessing, and analysis of cerebral blood flow (CBF) maps are encountered in such a population, and high-quality ASL CBF maps can be generated consistently with attention to quality control and with the use of a dedicated postprocessing pipeline. Familiarity with commonly encountered artifacts can help avoid pitfalls in the interpretation of CBF maps. The purpose of this review was to describe our experience with a heterogeneous collection of ASL perfusion cases with an emphasis on methodology and common artifacts encountered with the technique. In a period of 1 year, more than 3000 pulsed ASL cases were performed as a component of routine clinical brain MR evaluation at both 1.5 and 3T. These ASL studies were analyzed with respect to overall image quality and patterns of perfusion on final gray-scale DICOM images and color Joint Photographic Experts Group (JPEG) CBF maps, and common artifacts and their impact on final image quality were categorized.

Collaboration


Dive into the Joseph A. Maldjian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. Alsop

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

John A. Detre

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge