Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph A. Menapace is active.

Publication


Featured researches published by Joseph A. Menapace.


Applied Optics | 2007

National Ignition Facility laser performance status

C. A. Haynam; Paul J. Wegner; Jerome M. Auerbach; M. W. Bowers; S. Dixit; G. V. Erbert; G. M. Heestand; Mark A. Henesian; Mark Hermann; Kenneth S. Jancaitis; Kenneth R. Manes; Christopher D. Marshall; N. C. Mehta; Joseph A. Menapace; E. I. Moses; J. R. Murray; M. Nostrand; Charles D. Orth; R. Patterson; Richard A. Sacks; M. J. Shaw; M. Spaeth; S. Sutton; Wade H. Williams; C. Clay Widmayer; R. K. White; Steven T. Yang; B. Van Wonterghem

The National Ignition Facility (NIF) is the worlds largest laser system. It contains a 192 beam neodymium glass laser that is designed to deliver 1.8 MJ at 500 TW at 351 nm in order to achieve energy gain (ignition) in a deuterium-tritium nuclear fusion target. To meet this goal, laser design criteria include the ability to generate pulses of up to 1.8 MJ total energy, with peak power of 500 TW and temporal pulse shapes spanning 2 orders of magnitude at the third harmonic (351 nm or 3omega) of the laser wavelength. The focal-spot fluence distribution of these pulses is carefully controlled, through a combination of special optics in the 1omega (1053 nm) portion of the laser (continuous phase plates), smoothing by spectral dispersion, and the overlapping of multiple beams with orthogonal polarization (polarization smoothing). We report performance qualification tests of the first eight beams of the NIF laser. Measurements are reported at both 1omega and 3omega, both with and without focal-spot conditioning. When scaled to full 192 beam operation, these results demonstrate, to the best of our knowledge for the first time, that the NIF will meet its laser performance design criteria, and that the NIF can simultaneously meet the temporal pulse shaping, focal-spot conditioning, and peak power requirements for two candidate indirect drive ignition designs.


Proceedings of SPIE | 2004

NIF Optical Materials and Fabrication Technologies: An Overview

John H. Campbell; Ruth A. Hawley-Fedder; Christopher J. Stolz; Joseph A. Menapace; Michael Borden; Pamela K. Whitman; June Yu; Michael J. Runkel; Michael O. Riley; Michael D. Feit; Richard P. Hackel

The high-energy/high-power section of the NIF laser system contains 7360 meter-scale optics. Advanced optical materials and fabrication technologies needed to manufacture the NIF optics have been developed and put into production at key vendor sites. Production rates are up to 20 times faster and per-optic costs 5 times lower than could be achieved prior to the NIF. In addition, the optics manufactured for NIF are better than specification giving laser performance better than the design. A suite of custom metrology tools have been designed, built and installed at the vendor sites to verify compliance with NIF optical specifications. A brief description of the NIF optical wavefront specifications for the glass and crystal optics is presented. The wavefront specifications span a continuous range of spatial scale-lengths from 10 μm to 0.5 m (full aperture). We have continued our multi-year research effort to improve the lifetime (i.e. damage resistance) of bulk optical materials, finished optical surfaces and multi-layer dielectric coatings. New methods for post-processing the completed optic to improve the damage resistance have been developed and made operational. This includes laser conditioning of coatings, glass surfaces and bulk KDP and DKDP and well as raster and full aperture defect mapping systems. Research on damage mechanisms continues to drive the development of even better optical materials.


Optics Letters | 2010

Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces

P. E. Miller; J. D. Bude; Tayyab I. Suratwala; Nan Shen; Ted A. Laurence; William A. Steele; Joseph A. Menapace; Michael D. Feit; Lana Wong

The optical damage threshold of indentation-induced flaws on fused silica surfaces was explored. Mechanical flaws were characterized by laser damage testing, as well as by optical, secondary electron, and photoluminescence microscopy. Localized polishing, chemical leaching, and the control of indentation morphology were used to isolate the structural features that limit optical damage. A thin defect layer on fracture surfaces, including those smaller than the wavelength of visible light, was found to be the dominant source of laser damage initiation during illumination with 355 nm, 3 ns laser pulses. Little evidence was found that either displaced or densified material or fluence intensification plays a significant role in optical damage at fluences >35 J/cm(2). Elimination of the defect layer was shown to increase the overall damage performance of fused silica optics.


Boulder Damage Symposium XXXVII: Annual Symposium on Optical Materials for High Power Lasers | 2005

The distribution of subsurface damage in fused silica

P. E. Miller; Tayyab I. Suratwala; Lana Wong; Michael D. Feit; Joseph A. Menapace; Pete J. Davis; R. Steele

Managing subsurface damage during the shaping process and removing subsurface damage during the polishing process is essential in the production of low damage density optical components, such as those required for use on high peak power lasers. Removal of subsurface damage, during the polishing process, requires polishing to a depth which is greater than the depth of the residual cracks present following the shaping process. To successfully manage, and ultimately remove subsurface damage, understanding the distribution and character of fractures in the subsurface region introduced during fabrication process is important. We have characterized the depth and morphology of subsurface fractures present following fixed abrasive and loose abrasive grinding processes. At shallow depths lateral cracks and an overlapping series of trailing indentation fractures were found to be present. At greater depths, subsurface damage consists of a series of trailing indentation fractures. The area density of trailing fractures changes as a function of depth, however the length and shape of individual cracks remain nearly constant for a given grinding process. We have developed and applied a model to interpret the depth and crack length distributions of subsurface surface damage in terms of key variables including abrasive size and load.


Fusion Science and Technology | 2007

The mercury project : A high average power, gas-cooled laser for inertial fusion energy development

A. Bayramian; P. Armstrong; E. Ault; R. J. Beach; C. Bibeau; John A. Caird; R. Campbell; B. Chai; Jay W. Dawson; Christopher A. Ebbers; Alvin C. Erlandson; Y. Fei; Barry L. Freitas; R. Kent; Z. Liao; Tony Ladran; Joseph A. Menapace; B. Molander; Stephen A. Payne; N. Peterson; M. Randles; Kathleen I. Schaffers; S. Sutton; John B. Tassano; S. Telford; E. Utterback

Abstract Hundred-joule, kilowatt-class lasers based on diode-pumped solid-state technologies, are being developed worldwide for laser-plasma interactions and as prototypes for fusion energy drivers. The goal of the Mercury Laser Project is to develop key technologies within an architectural framework that demonstrates basic building blocks for scaling to larger multi-kilojoule systems for inertial fusion energy (IFE) applications. Mercury has requirements that include: scalability to IFE beamlines, 10 Hz repetition rate, high efficiency, and 109 shot reliability. The Mercury laser has operated continuously for several hours at 55 J and 10 Hz with fourteen 4 × 6 cm2 ytterbium doped strontium fluoroapatite amplifier slabs pumped by eight 100 kW diode arrays. A portion of the output 1047 nm was converted to 523 nm at 160 W average power with 73 % conversion efficiency using yttrium calcium oxy-borate (YCOB).


Journal of The Optical Society of America B-optical Physics | 2008

High-average-power femto-petawatt laser pumped by the Mercury laser facility

A. Bayramian; James P. Armstrong; Glenn Beer; R. Campbell; Bruce H. T. Chai; Robert R. Cross; Alvin C. Erlandson; Yting Fei; Barry L. Freitas; Robert Kent; Joseph A. Menapace; William A. Molander; Kathleen I. Schaffers; C. W. Siders; S. Sutton; John B. Tassano; Steve Telford; Christopher A. Ebbers; John A. Caird; C. P. J. Barty

The Mercury laser system is a diode-pumped solid-state laser that has demonstrated over 60 J at a repetition rate of 10 Hz (600 W) of near-infrared light (1047 nm). Using a yttrium calcium oxyborate frequency converter, we have demonstrated 31.7 J/pulse at 10 Hz of second harmonic generation. The frequency converted Mercury laser system will pump a high-average-power Ti:sapphire chirped pulse amplifier system that will produce a compressed peak power > 1 PW and peak irradiance > 1023W/cm2.


Laser Damage Symposium XLI: Annual Symposium on Optical Materials for High Power Lasers | 2009

Laser Damage Precursors in Fused Silica

P. E. Miller; Tayyab I. Suratwala; J. D. Bude; Ted A. Laurence; Nan Shen; William A. Steele; Michael D. Feit; Joseph A. Menapace; Lana Wong

There is a longstanding, and largely unexplained, correlation between the laser damage susceptibility of optical components and both the surface quality of the optics, and the presence of near surface fractures in an optic. In the present work, a combination of acid leaching, acid etching, and confocal time resolved photoluminescence (CTP) microscopy has been used to study laser damage initiation at indentation sites. The combination of localized polishing and variations in indentation loads allows one to isolate and characterize the laser damage susceptibility of densified, plastically flowed and fractured fused silica. The present results suggest that: 1) laser damage initiation and growth are strongly correlated with fracture surfaces, while densified and plastically flowed material is relatively benign, and 2) fracture events result in the formation of an electronically defect rich surface layer which promotes energy transfer from the optical beam to the glass matrix.


Proceedings of SPIE | 2004

NIF final optics system: frequency conversion and beam conditioning

Paul J. Wegner; Jerome M. Auerbach; Thomas A. Biesiada; Sham N. Dixit; Janice K. Lawson; Joseph A. Menapace; Thomas Gene Parham; David W. Swift; Pamela K. Whitman; Wade H. Williams

Installation and commissioning of the first of forty-eight Final Optics Assemblies on the National Ignition Facility was completed this past year. This activity culminated in the delivery of first light to a target. The final optics design is described and selected results from first-article commissioning and performance tests are presented.


Laser-Induced Damage in Optical Materials: 2001 | 2002

Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused-silica optics

Joseph A. Menapace; B. M. Penetrante; Donald Golini; Albert Slomba; Philip E. Miller; Thomas Gene Parham; Mike Nichols; John Peterson

Laser-induced damage initiation on fused silica optics can limit the lifetime of the components when used in high power UV laser environments. For example in inertial confinement fusion research applications, the optics can be exposed to temporal laser pulses of about 3 nsec with average fluences of 8 J/cm2 and peak fluences between 12 and 15 J/cm2. During the past year, we have focused on optimizing the damage performance at a wavelength of 355-nm (3(omega) ), 3-nsec pulse length, for optics in this category by examining a variety of finishing technologies with a challenge to improve the laser damage initiation density by at least two orders of magnitude. In this paper, we describe recent advances in improving the 3(omega) damage initiation performance of laboratory-scale zirconium oxide and cerium oxide conventionally finished fused silica optics via application of processes incorporating magnetorheological finishing (MRF), wet chemical etching, and UV laser conditioning. Details of the advanced finishing procedures are described and comparisons are made between the procedures based upon large area 3(omega) damage performance, polishing layer contamination, and optical subsurface damage.


XXXV Annual Symposium on Optical Materials for High Power Lasers: Boulder Damage Symposium | 2004

Magnetorheological finishing for imprinting continuous-phase plate structures onto optical surfaces

Joseph A. Menapace; Sham N. Dixit; Francois Y. Genin; Wayne F. Brocious

Magnetorheological finishing (MRF) techniques have been developed to manufacture continuous phase plates (CPPs) and custom phase corrective structures on polished fused silica surfaces. These phase structures are important for laser applications requiring precise manipulation and control of beam-shape, energy distribution, and wavefront profile. The MRF’s unique deterministic-sub-aperture polishing characteristics make it possible to imprint complex topographical information onto optical surfaces at spatial scale-lengths approaching 1 mm. In this study, we present the results of experiments and model calculations that explore imprinting two-dimensional sinusoidal structures. Results show how the MRF removal function impacts and limits imprint fidelity and what must be done to arrive at a high quality surface. We also present several examples of this imprinting technology for fabrication of phase correction plates and CPPs for use at high fluences.

Collaboration


Dive into the Joseph A. Menapace's collaboration.

Top Co-Authors

Avatar

Kathleen I. Schaffers

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Bayramian

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Ebbers

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Sutton

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tayyab I. Suratwala

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John B. Tassano

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael D. Feit

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Barry L. Freitas

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Stolz

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. E. Miller

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge