Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph A. Roche is active.

Publication


Featured researches published by Joseph A. Roche.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Dysferlin stabilizes stress-induced Ca2+ signaling in the transverse tubule membrane

Jaclyn P. Kerr; Andrew P. Ziman; Amber L. Mueller; Joaquin M. Muriel; Emily Kleinhans-Welte; Jessica Gumerson; Steven S. Vogel; Christopher W. Ward; Joseph A. Roche; Robert J. Bloch

Significance Muscular dystrophies linked to the genetic absence or mutations of dysferlin are currently without a relevant therapy. Dysferlin is thought to mediate membrane repair in skeletal muscle, but its localization and specific functions remain controversial. Here we show that dysferlin is enriched in the transverse tubule membrane of skeletal muscle and demonstrate that, in its absence, mechanical stress leads to calcium-dependent muscle injury. Furthermore, we demonstrate that treatment of dysferlin-deficient muscle with the calcium channel blocker diltiazem reduces in vitro experimental and in vivo contraction-induced muscle damage. As diltiazem is approved for clinical use, our results suggest a potential new therapeutic avenue for patients diagnosed with dysferlinopathies. Dysferlinopathies, most commonly limb girdle muscular dystrophy 2B and Miyoshi myopathy, are degenerative myopathies caused by mutations in the DYSF gene encoding the protein dysferlin. Studies of dysferlin have focused on its role in the repair of the sarcolemma of skeletal muscle, but dysferlin’s association with calcium (Ca2+) signaling proteins in the transverse (t-) tubules suggests additional roles. Here, we reveal that dysferlin is enriched in the t-tubule membrane of mature skeletal muscle fibers. Following experimental membrane stress in vitro, dysferlin-deficient muscle fibers undergo extensive functional and structural disruption of the t-tubules that is ameliorated by reducing external [Ca2+] or blocking L-type Ca2+ channels with diltiazem. Furthermore, we demonstrate that diltiazem treatment of dysferlin-deficient mice significantly reduces eccentric contraction-induced t-tubule damage, inflammation, and necrosis, which resulted in a concomitant increase in postinjury functional recovery. Our discovery of dysferlin as a t-tubule protein that stabilizes stress-induced Ca2+ signaling offers a therapeutic avenue for limb girdle muscular dystrophy 2B and Miyoshi myopathy patients.


Neuroreport | 2008

Impaired recovery of dysferlin-null skeletal muscle after contraction-induced injury in vivo

Joseph A. Roche; Richard M. Lovering; Robert J. Bloch

The protein, dysferlin, mediates sarcolemmal repair in vitro, implicating defective membrane repair in dysferlinopathies. To study the role of dysferlin in vivo, we assessed contractile function, sarcolemmal integrity, and myogenesis before and after injury from large-strain lengthening contractions in dysferlin-null and control mice. We report that dysferlin-null muscles produce higher contractile torque, and are equally susceptible to initial injury but recover from injury more slowly. Two weeks after injury, control muscles retain fluorescein dextran and do not show myogenesis. Dysferlin-null muscles do not retain fluorescein dextran, and show necrosis followed by myogenesis. Our data indicate that recovery of control muscles from injury primarily involves sarcolemmal repair whereas recovery of dysferlin-null muscles primarily involves myogenesis without repair and long-term survival of myofibers.


American Journal of Pathology | 2009

Genetic Manipulation of Dysferlin Expression in Skeletal Muscle : Novel Insights into Muscular Dystrophy

Douglas P. Millay; Marjorie Maillet; Joseph A. Roche; Michelle A. Sargent; Elizabeth M. McNally; Robert J. Bloch; Jeffery D. Molkentin

Mutations in the gene DYSF, which codes for the protein dysferlin, underlie Miyoshi myopathy and limb-girdle muscular dystrophy 2B in humans and produce a slowly progressing skeletal muscle degenerative disease in mice. Dysferlin is a Ca(2+)-sensing, regulatory protein that is involved in membrane repair after injury. To assess the function of dysferlin in healthy and dystrophic skeletal muscle, we generated skeletal muscle-specific transgenic mice with threefold overexpression of this protein. These mice were phenotypically indistinguishable from wild-type, and more importantly, the transgene completely rescued the muscular dystrophy (MD) disease in Dysf-null A/J mice. The dysferlin transgene rescued all histopathology and macrophage infiltration in skeletal muscle of Dysf(-/-) A/J mice, as well as promoted the rapid recovery of muscle function after forced lengthening contractions. These results indicate that MD in A/J mice is autonomous to skeletal muscle and not initiated by any other cell type. However, overexpression of dysferlin did not improve dystrophic symptoms or membrane instability in the dystrophin-glycoprotein complex-lacking Scgd (delta-sarcoglycan) null mouse, indicating that dysferlin functionality is not a limiting factor underlying membrane repair in other models of MD. In summary, the restoration of dysferlin in skeletal muscle fibers is sufficient to rescue the MD in Dysf-deficient mice, although its mild overexpression does not appear to functionally enhance membrane repair in other models of MD.


PLOS ONE | 2012

Lack of correlation between outcomes of membrane repair assay and correction of dystrophic changes in experimental therapeutic strategy in dysferlinopathy.

William Lostal; M. Bartoli; Carinne Roudaut; Nathalie Bourg; Martin Krahn; Marina Pryadkina; Perrine Borel; Laurence Suel; Joseph A. Roche; Daniel Stockholm; Robert J. Bloch; Nicolas Lévy; Rumaisa Bashir; Isabelle Richard

Mutations in the dysferlin gene are the cause of Limb-girdle Muscular Dystrophy type 2B and Miyoshi Myopathy. The dysferlin protein has been implicated in sarcolemmal resealing, leading to the idea that the pathophysiology of dysferlin deficiencies is due to a deficit in membrane repair. Here, we show using two different approaches that fullfiling membrane repair as asseyed by laser wounding assay is not sufficient for alleviating the dysferlin deficient pathology. First, we generated a transgenic mouse overexpressing myoferlin to test the hypothesis that myoferlin, which is homologous to dysferlin, can compensate for the absence of dysferlin. The myoferlin overexpressors show no skeletal muscle abnormalities, and crossing them with a dysferlin-deficient model rescues the membrane fusion defect present in dysferlin-deficient mice in vitro. However, myoferlin overexpression does not correct muscle histology in vivo. Second, we report that AAV-mediated transfer of a minidysferlin, previously shown to correct the membrane repair deficit in vitro, also fails to improve muscle histology. Furthermore, neither myoferlin nor the minidysferlin prevented myofiber degeneration following eccentric exercise. Our data suggest that the pathogenicity of dysferlin deficiency is not solely related to impairment in sarcolemmal repair and highlight the care needed in selecting assays to assess potential therapies for dysferlinopathies.


American Journal of Physiology-cell Physiology | 2010

Extensive mononuclear infiltration and myogenesis characterize recovery of dysferlin-null skeletal muscle from contraction-induced injuries

Joseph A. Roche; Richard M. Lovering; Renuka Roche; Lisa W. Ru; Patrick W. Reed; Robert J. Bloch

We studied the response of dysferlin-null and control skeletal muscle to large- and small-strain injuries to the ankle dorsiflexors in mice. We measured contractile torque and counted fibers retaining 10-kDa fluorescein dextran, necrotic fibers, macrophages, and fibers with central nuclei and expressing developmental myosin heavy chain to assess contractile function, membrane resealing, necrosis, inflammation, and myogenesis. We also studied recovery after blunting myogenesis with X-irradiation. We report that dysferlin-null myofibers retain 10-kDa dextran for 3 days after large-strain injury but are lost thereafter, following necrosis and inflammation. Recovery of dysferlin-null muscle requires myogenesis, which delays the return of contractile function compared with controls, which recover from large-strain injury by repairing damaged myofibers without significant inflammation, necrosis, or myogenesis. Recovery of control and dysferlin-null muscles from small-strain injury involved inflammation and necrosis followed by myogenesis, all of which were more pronounced in the dysferlin-null muscles, which recovered more slowly. Both control and dysferlin-null muscles also retained 10-kDa dextran for 3 days after small-strain injury. We conclude that dysferlin-null myofibers can survive contraction-induced injury for at least 3 days but are subsequently eliminated by necrosis and inflammation. Myogenesis to replace lost fibers does not appear to be significantly compromised in dysferlin-null mice.


Molecular Biology of the Cell | 2009

The Rho-Guanine Nucleotide Exchange Factor Domain of Obscurin Activates RhoA Signaling in Skeletal Muscle

Diana L. Ford-Speelman; Joseph A. Roche; Amber L. Bowman; Robert J. Bloch

Obscurin is a large ( approximately 800-kDa), modular protein of striated muscle that concentrates around the M-bands and Z-disks of each sarcomere, where it is well positioned to sense contractile activity. Obscurin contains several signaling domains, including a rho-guanine nucleotide exchange factor (rhoGEF) domain and tandem pleckstrin homology domain, consistent with a role in rho signaling in muscle. We investigated the ability of obscurins rhoGEF domain to interact with and activate small GTPases. Using a combination of in vitro and in vivo approaches, we found that the rhoGEF domain of obscurin binds selectively to rhoA, and that rhoA colocalizes with obscurin at the M-band in skeletal muscle. Other small GTPases, including rac1 and cdc42, neither associate with the rhoGEF domain of obscurin nor concentrate at the level of the M-bands. Furthermore, overexpression of the rhoGEF domain of obscurin in adult skeletal muscle selectively increases rhoA expression and activity in this tissue. Overexpression of obscurins rhoGEF domain and its effects on rhoA alter the expression of rho kinase and citron kinase, both of which can be activated by rhoA in other tissues. Injuries to rodent hindlimb muscles caused by large-strain lengthening contractions increases rhoA activity and displaces it from the M-bands to Z-disks, similar to the effects of overexpression of obscurins rhoGEF domain. Our results suggest that obscurins rhoGEF domain signals at least in part by inducing rhoA expression and activation, and altering the expression of downstream kinases in vitro and in vivo.


Frontiers in Physiology | 2014

Genetic silencing of Nrf2 enhances X-ROS in dysferlin-deficient muscle.

Ponvijay Kombairaju; Jaclyn P. Kerr; Joseph A. Roche; Stephen J.P. Pratt; Richard M. Lovering; Thomas E. Sussan; Jung Hyun Kim; Guoli Shi; Shyam Biswal; Christopher W. Ward

Oxidative stress is a critical disease modifier in the muscular dystrophies. Recently, we discovered a pathway by which mechanical stretch activates NADPH Oxidase 2 (Nox2) dependent ROS generation (X-ROS). Our work in dystrophic skeletal muscle revealed that X-ROS is excessive in dystrophin-deficient (mdx) skeletal muscle and contributes to muscle injury susceptibility, a hallmark of the dystrophic process. We also observed widespread alterations in the expression of genes associated with the X-ROS pathway and redox homeostasis in muscles from both Duchenne muscular dystrophy patients and mdx mice. As nuclear factor erythroid 2-related factor 2 (Nrf2) plays an essential role in the transcriptional regulation of genes involved in redox homeostasis, we hypothesized that Nrf2 deficiency may contribute to enhanced X-ROS signaling by reducing redox buffering. To directly test the effect of diminished Nrf2 activity, Nrf2 was genetically silenced in the A/J model of dysferlinopathy—a model with a mild histopathologic and functional phenotype. Nrf2-deficient A/J mice exhibited significant muscle-specific functional deficits, histopathologic abnormalities, and dramatically enhanced X-ROS compared to control A/J and WT mice, both with functional Nrf2. Having identified that reduced Nrf2 activity is a negative disease modifier, we propose that strategies targeting Nrf2 activation may address the generalized reduction in redox homeostasis to halt or slow dystrophic progression.


Journal of Histochemistry and Cytochemistry | 2011

Unmasking Potential Intracellular Roles For Dysferlin through Improved Immunolabeling Methods

Joseph A. Roche; Lisa W. Ru; Andrea M. O’Neill; Wendy G. Resneck; Richard M. Lovering; Robert J. Bloch

Mutations in the DYSF gene that severely reduce the levels of the protein dysferlin are implicated in muscle-wasting syndromes known as dysferlinopathies. Although studies of its function in skeletal muscle have focused on its potential role in repairing the plasma membrane, dysferlin has also been found, albeit inconsistently, in the sarcoplasm of muscle fibers. The aim of this article is to study the localization of dysferlin in skeletal muscle through optimized immunolabeling methods. We studied the localization of dysferlin in control rat skeletal muscle using several different methods of tissue collection and subsequent immunolabeling. We then applied our optimized immunolabeling methods on human cadaveric muscle, control and dystrophic human muscle biopsies, and control and dysferlin-deficient mouse muscle. Our data suggest that dysferlin is present in a reticulum of the sarcoplasm, similar but not identical to those containing the dihydropyridine receptors and distinct from the distribution of the sarcolemmal protein dystrophin. Our data illustrate the importance of tissue fixation and antigen unmasking for proper immunolocalization of dysferlin. They suggest that dysferlin has an important function in the internal membrane systems of skeletal muscle, involved in calcium homeostasis and excitation-contraction coupling.


American Journal of Physiology-cell Physiology | 2011

Physiological and histological changes in skeletal muscle following in vivo gene transfer by electroporation

Joseph A. Roche; Diana L. Ford-Speelman; Lisa W. Ru; Allison L. Densmore; Renuka Roche; Patrick W. Reed; Robert J. Bloch

Electroporation (EP) is used to transfect skeletal muscle fibers in vivo, but its effects on the structure and function of skeletal muscle tissue have not yet been documented in detail. We studied the changes in contractile function and histology after EP and the influence of the individual steps involved to determine the mechanism of recovery, the extent of myofiber damage, and the efficiency of expression of a green fluorescent protein (GFP) transgene in the tibialis anterior (TA) muscle of adult male C57Bl/6J mice. Immediately after EP, contractile torque decreased by ∼80% from pre-EP levels. Within 3 h, torque recovered to ∼50% but stayed low until day 3. Functional recovery progressed slowly and was complete at day 28. In muscles that were depleted of satellite cells by X-irradiation, torque remained low after day 3, suggesting that myogenesis is necessary for complete recovery. In unirradiated muscle, myogenic activity after EP was confirmed by an increase in fibers with central nuclei or developmental myosin. Damage after EP was confirmed by the presence of necrotic myofibers infiltrated by CD68+ macrophages, which persisted in electroporated muscle for 42 days. Expression of GFP was detected at day 3 after EP and peaked on day 7, with ∼25% of fibers transfected. The number of fibers expressing green fluorescent protein (GFP), the distribution of GFP+ fibers, and the intensity of fluorescence in GFP+ fibers were highly variable. After intramuscular injection alone, or application of the electroporating current without injection, torque decreased by ∼20% and ∼70%, respectively, but secondary damage at D3 and later was minimal. We conclude that EP of murine TA muscles produces variable and modest levels of transgene expression, causes myofiber damage due to the interaction of intramuscular injection with the permeabilizing current, and that full recovery requires myogenesis.


BioMed Research International | 2012

Distinct Effects of Contraction-Induced Injury In Vivo on Four Different Murine Models of Dysferlinopathy

Joseph A. Roche; Lisa W. Ru; Robert J. Bloch

Mutations in the DYSF gene, encoding dysferlin, cause muscular dystrophies in man. We compared 4 dysferlinopathic mouse strains: SJL/J and B10.SJL-Dysfim/AwaJ (B10.SJL), and A/J and B6.A-Dysfprmd/GeneJ (B6.A/J). The former but not the latter two are overtly myopathic and weaker at 3 months of age. Following repetitive large-strain injury (LSI) caused by lengthening contractions, all except B6.A/J showed ~40% loss in contractile torque. Three days later, torque in SJL/J, B10.SJL and controls, but not A/J, recovered nearly completely. B6.A/J showed ~30% torque loss post-LSI and more variable recovery. Pre-injury, all dysferlinopathic strains had more centrally nucleated fibers (CNFs) and all but A/J showed more inflammation than controls. At D3, all dysferlinopathic strains showed increased necrosis and inflammation, but not more CNFs; controls were unchanged. Dystrophin-null DMDmdx mice showed more necrosis and inflammation than all dysferlin-nulls. Torque loss and inflammation on D3 across all strains were linearly related to necrosis. Our results suggest that (1) dysferlin is not required for functional recovery 3 days after LSI; (2) B6.A/J mice recover from LSI erratically; (3) SJL/J and B10.SJL muscles recover rapidly, perhaps due to ongoing myopathy; (4) although they recover function to different levels, all 4 dysferlinopathic strains show increased inflammation and necrosis 3 days after LSI.

Collaboration


Dive into the Joseph A. Roche's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa W. Ru

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge