Joseph Akoi Bore
Bernhard Nocht Institute for Tropical Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joseph Akoi Bore.
Nature | 2016
Paula Ruibal; Lisa Oestereich; Anja Lüdtke; Beate Becker-Ziaja; David M. Wozniak; Romy Kerber; Miša Korva; Mar Cabeza-Cabrerizo; Joseph Akoi Bore; Fara Raymond Koundouno; Sophie Duraffour; Romy Weller; Anja Thorenz; Eleonora Cimini; Domenico Viola; Chiara Agrati; Johanna Repits; Babak Afrough; Lauren A. Cowley; Didier Ngabo; Julia Hinzmann; Marc Mertens; Inês Vitoriano; Christopher H. Logue; Jan Peter Boettcher; Elisa Pallasch; Andreas Sachse; Amadou Bah; Katja Nitzsche; Eeva Kuisma
Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we identify an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by a high percentage of CD4+ and CD8+ T cells expressing the inhibitory molecules CTLA-4 and PD-1, which correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation, despite comparable overall T cell activation. Concomitant with virus clearance, survivors mounted a robust Ebola-virus-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology.
Clinical Infectious Diseases | 2016
Séverine Caluwaerts; Tessy Fautsch; Daphne Lagrou; Michel Moreau; Alseny Modet Camara; Stephan Günther; Antonino Di Caro; Benny Borremans; Fara Raymond Koundouno; Joseph Akoi Bore; Christopher H. Logue; Martin Richter; Roman Wölfel; Eeva Kuisma; Andreas Kurth; Stephen Thomas; Gillian Burkhardt; Elin Erland; Fanshen Lionetto; Patricia Lledo Weber; Olimpia de la Rosa; Hassan Macpherson; Michel Van Herp
We report 2 cases of Ebola viral disease (EVD) in pregnant women who survived, initially with intact pregnancies. Respectively 31–32 days after negativation of the maternal blood EVD-polymerase chain reaction (PCR) both patients delivered a stillborn fetus with persistent EVD-PCR amniotic fluid positivity.
The Lancet Global Health | 2017
Daouda Sissoko; Sophie Duraffour; Romy Kerber; Jacques Seraphin Kolié; Abdoul Habib Beavogui; Alseny Modet Camara; Géraldine Colin; Toni Rieger; Lisa Oestereich; Bernadett Pályi; Stephanie Wurr; Jeremie Guedj; Thi Huyen Tram Nguyen; Rosalind M. Eggo; Conall H. Watson; W. John Edmunds; Joseph Akoi Bore; Fara Raymond Koundouno; Mar Cabeza-Cabrerizo; Lisa L. Carter; Liana Eleni Kafetzopoulou; Eeva Kuisma; Janine Michel; Livia Victoria Patrono; Natasha Y. Rickett; Katrin Singethan; Martin Rudolf; Angelika Lander; Elisa Pallasch; Sabrina Bockholt
BACKGROUND By January, 2016, all known transmission chains of the Ebola virus disease (EVD) outbreak in west Africa had been stopped. However, there is concern about persistence of Ebola virus in the reproductive tract of men who have survived EVD. We aimed to use biostatistical modelling to describe the dynamics of Ebola virus RNA load in seminal fluid, including clearance parameters. METHODS In this longitudinal study, we recruited men who had been discharged from three Ebola treatment units in Guinea between January and July, 2015. Participants provided samples of seminal fluid at follow-up every 3-6 weeks, which we tested for Ebola virus RNA using quantitative real-time RT-PCR. Representative specimens from eight participants were then inoculated into immunodeficient mice to test for infectivity. We used a linear mixed-effect model to analyse the dynamics of virus persistence in seminal fluid over time. FINDINGS We enrolled 26 participants and tested 130 seminal fluid specimens; median follow up was 197 days (IQR 187-209 days) after enrolment, which corresponded to 255 days (228-287) after disease onset. Ebola virus RNA was detected in 86 semen specimens from 19 (73%) participants. Median duration of Ebola virus RNA detection was 158 days after onset (73-181; maximum 407 days at end of follow-up). Mathematical modelling of the quantitative time-series data showed a mean clearance rate of Ebola virus RNA from seminal fluid of -0·58 log units per month, although the clearance kinetic varied greatly between participants. Using our biostatistical model, we predict that 50% and 90% of male survivors clear Ebola virus RNA from seminal fluid at 115 days (90% prediction interval 72-160) and 294 days (212-399) after disease onset, respectively. We also predicted that the number of men positive for Ebola virus RNA in affected countries would decrease from about 50 in January 2016, to fewer than 1 person by July, 2016. Infectious virus was detected in 15 of 26 (58%) specimens tested in mice. INTERPRETATION Time to clearance of Ebola virus RNA from seminal fluid varies greatly between individuals and could be more than 13 months. Our predictions will assist in decision-making about surveillance and preventive measures in EVD outbreaks. FUNDING This study was funded by European Unions Horizon 2020 research and innovation programme, Directorate-General for International Cooperation and Development of the European Commission, Institut national de la santé et de la recherche médicale (INSERM), German Research Foundation (DFG), and Innovative Medicines Initiative 2 Joint Undertaking.
Eurosurveillance | 2015
M. Moreau; C. Spencer; J.G. Gozalbes; Robert Colebunders; A. Lefevre; Sophie Gryseels; Benny Borremans; Stephan Günther; Dirk Becker; Joseph Akoi Bore; Fara Raymond Koundouno; A. Di Caro; Roman Wölfel; Tom Decroo; M Van Herp; Leentje Peetermans; Alseny Modet Camara
We describe two Ebola virus (EBOV) RT-PCR discordant mother-child pairs. In the first, blood from the breastfeeding mother, recovering from EBOV infection, tested negative twice but her urine tested positive. Her child became infected by EBOV and died. In the second, the breastfed child remained EBOV-negative, although the mothers blood tested positive. We highlight possible benefits of EBOV RT-PCR testing in urine and breast milk and the need for hygiene counselling when those fluids are EBOV-positive. .
Clinical Infectious Diseases | 2016
Daouda Sissoko; Mory Keïta; Boubacar Diallo; Negar Aliabadi; David L. Fitter; Benjamin A. Dahl; Joseph Akoi Bore; Fara Raymond Koundouno; Katrin Singethan; Sarah Meisel; Theresa Enkirch; Antonio Mazzarelli; Victoria Amburgey; Ousmane Faye; Amadou A. Sall; N’Faly Magassouba; Miles W. Carroll; Xavier Anglaret; D. Malvy; Pierre Formenty; Raymond Bruce Aylward; Sakoba Keita; Mamoudou H. Djingarey; Nicholas J. Loman; Stephan Günther; Sophie Duraffour
Abstract A 9-month-old infant died from Ebola virus (EBOV) disease with unknown epidemiological link. While her parents did not report previous illness, laboratory investigations revealed persisting EBOV RNA in the mother’s breast milk and the father’s seminal fluid. Genomic analysis strongly suggests EBOV transmission to the child through breastfeeding.
Clinical Infectious Diseases | 2015
Thomas Strecker; Bernadett Pályi; Heinz Ellerbrok; Sylvie Jonckheere; Hilde De Clerck; Joseph Akoi Bore; Martin Gabriel; Kilian Stoecker; Markus Eickmann; Michel Van Herp; Pierre Formenty; Antonino Di Caro; Stephan Becker
This study demonstrated the applicability of capillary blood samples as clinical specimens for field diagnosis of Ebola virus infection in an outbreak emergency.
The Journal of Infectious Diseases | 2016
Romy Kerber; Ralf Krumkamp; Boubacar Diallo; Anna Jaeger; Martin Rudolf; Simone Lanini; Joseph Akoi Bore; Fara Raymond Koundouno; Beate Becker-Ziaja; Erna Fleischmann; Kilian Stoecker; Silvia Meschi; Stéphane Mély; Edmund Newman; Fabrizio Carletti; Jasmine Portmann; Miša Korva; Svenja Wolff; Peter Molkenthin; Zoltan Kis; Anne Kelterbaum; Anne Bocquin; Thomas Strecker; Alexandra Fizet; Concetta Castilletti; Gordian Schudt; Lisa J. Ottowell; Andreas Kurth; Barry Atkinson; Marlis Badusche
Background. A unit of the European Mobile Laboratory (EMLab) consortium was deployed to the Ebola virus disease (EVD) treatment unit in Guéckédou, Guinea, from March 2014 through March 2015. Methods. The unit diagnosed EVD and malaria, using the RealStar Filovirus Screen reverse transcription–polymerase chain reaction (RT-PCR) kit and a malaria rapid diagnostic test, respectively. Results. The cleaned EMLab database comprised 4719 samples from 2741 cases of suspected EVD from Guinea. EVD was diagnosed in 1231 of 2178 hospitalized patients (57%) and in 281 of 563 who died in the community (50%). Children aged <15 years had the highest proportion of Ebola virus–malaria parasite coinfections. The case-fatality ratio was high in patients aged <5 years (80%) and those aged >74 years (90%) and low in patients aged 10–19 years (40%). On admission, RT-PCR analysis of blood specimens from patients who died in the hospital yielded a lower median cycle threshold (Ct) than analysis of blood specimens from survivors (18.1 vs 23.2). Individuals who died in the community had a median Ct of 21.5 for throat swabs. Multivariate logistic regression on 1047 data sets revealed that low Ct values, ages of <5 and ≥45 years, and, among children aged 5–14 years, malaria parasite coinfection were independent determinants of a poor EVD outcome. Conclusions. Virus load, age, and malaria parasite coinfection play a role in the outcome of EVD.
PLOS Neglected Tropical Diseases | 2017
Eleonora Cimini; Domenico Viola; Mar Cabeza-Cabrerizo; Antonella Romanelli; Alessandra Sacchi; Veronica Bordoni; Rita Casetti; Federica Turchi; Federico Martini; Joseph Akoi Bore; Fara Raymond Koundouno; Sophie Duraffour; Janine Michel; Tobias Holm; Elsa Gayle Zekeng; Lauren A. Cowley; Isabel García Dorival; Juliane Doerrbecker; Nicole Hetzelt; Jonathan H. J. Baum; Jasmine Portmann; Roman Wölfel; Martin Gabriel; Osvaldo Miranda; Graciliano Díaz; José E. Díaz; Yoel A. Fleites; Carlos A. Piñeiro; Carlos M. Castro; Lamine Koivogui
Background Human Ebola infection is characterized by a paralysis of the immune system. A signature of αβ T cells in fatal Ebola infection has been recently proposed, while the involvement of innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of this study was to analyze γδ T and NK cells in patients from the Ebola outbreak of 2014–2015 occurred in West Africa, and to assess their association with the clinical outcome. Methodology/Principal findings Nineteen Ebola-infected patients were enrolled at the time of admission to the Ebola Treatment Centre in Guinea. Patients were divided in two groups on the basis of the clinical outcome. The analysis was performed by using multiparametric flow cytometry established by the European Mobile Laboratory in the field. A low frequency of Vδ2 T-cells was observed during Ebola infection, independently from the clinical outcome. Moreover, Vδ2 T-cells from Ebola patients massively expressed CD95 apoptotic marker, suggesting the involvement of apoptotic mechanisms in Vδ2 T-cell loss. Interestingly, Vδ2 T-cells from survivors expressed an effector phenotype and presented a lower expression of the CTLA-4 exhaustion marker than fatalities, suggesting a role of effector Vδ2 T-cells in the protection. Furthermore, patients with fatal Ebola infection were characterized by a lower NK cell frequency than patients with non fatal infection. In particular, both CD56bright and CD56dim NK frequency were very low both in fatal and non fatal infections, while a higher frequency of CD56neg NK cells was associated to non-fatal infections. Finally, NK activation and expression of NKp46 and CD158a were independent from clinical outcome. Conclusions/Significances Altogether, the data suggest that both effector Vδ2 T-cells and NK cells may play a role in the complex network of protective response to EBOV infection. Further studies are required to characterize the protective effector functions of Vδ2 and NK cells.
mSphereDirect | 2017
Miles W. Carroll; Sam Haldenby; Natasha Y. Rickett; Bernadett Pályi; Isabel García-Dorival; Xuan Liu; Gary L. A. Barker; Joseph Akoi Bore; Fara Raymond Koundouno; E. Diane Williamson; Thomas R. Laws; Romy Kerber; Daouda Sissoko; Nóra Magyar; Antonino Di Caro; Mirella Biava; Tom E. Fletcher; Armand Sprecher; Lisa F. P. Ng; Laurent Rénia; N’Faly Magassouba; Stephan Günther; Roman Wölfel; Kilian Stoecker; David A. Matthews; Julian A. Hiscox
Our results highlight the identification of an array of pathogens in the blood of patients with Ebola virus disease (EVD). This has not been done before, and the data have important implications for the treatment of patients with EVD, particularly considering antibiotic stewardship. We show that EVD patients who were also infected with Plasmodium, particularly at higher loads, had more adverse outcomes than patients with lower levels of Plasmodium. However, the presence of Plasmodium did not influence the innate immune response, and it is likely that the presence of EBOV dominated this response. Several viruses other than EBOV were identified, and bacteria associated with sepsis were also identified. These findings were indicative of bacterial translocation across the gut during the acute phase of EVD. ABSTRACT In this study, samples from the 2013–2016 West African Ebola virus outbreak from patients in Guinea with Ebola virus disease (EVD) were analyzed to discover and classify what other pathogens were present. Throat swabs were taken from deceased EVD patients, and peripheral blood samples were analyzed that had been taken from patients when they presented at the treatment center with acute illness. High-throughput RNA sequencing (RNA-seq) and bioinformatics were used to identify the potential microorganisms. This approach confirmed Ebola virus (EBOV) in all samples from patients diagnosed as acute positive for the virus by quantitative reverse transcription-PCR in deployed field laboratories. Nucleic acid mapping to Plasmodium was also used on the patient samples, confirming results obtained with an antigen-based rapid diagnostic test (RDT) conducted in the field laboratories. The data suggested that a high Plasmodium load, as determined by sequence read depth, was associated with mortality and influenced the host response, whereas a lower parasite load did not appear to affect outcome. The identifications of selected bacteria from throat swabs via RNA-seq were confirmed by culture. The data indicated that the potential pathogens identified in the blood samples were associated with translocation from the gut, suggesting the presence of bacteremia, which transcriptome data suggested may induce or aggravate the acute-phase response observed during EVD. Transcripts mapping to different viruses were also identified, including those indicative of lytic infections. The development of high-resolution analysis of samples from patients with EVD will help inform care pathways and the most appropriate general antimicrobial therapy to be used in a resource-poor setting. IMPORTANCE Our results highlight the identification of an array of pathogens in the blood of patients with Ebola virus disease (EVD). This has not been done before, and the data have important implications for the treatment of patients with EVD, particularly considering antibiotic stewardship. We show that EVD patients who were also infected with Plasmodium, particularly at higher loads, had more adverse outcomes than patients with lower levels of Plasmodium. However, the presence of Plasmodium did not influence the innate immune response, and it is likely that the presence of EBOV dominated this response. Several viruses other than EBOV were identified, and bacteria associated with sepsis were also identified. These findings were indicative of bacterial translocation across the gut during the acute phase of EVD.
Scientific Reports | 2018
Bert Vanmechelen; Valentijn Vergote; Lies Laenen; Fara Raymond Koundouno; Joseph Akoi Bore; Jiro Wada; Jens H. Kuhn; Miles W. Carroll; Piet Maes
The family Arteriviridae harbors a rapidly expanding group of viruses known to infect a divergent group of mammals, including horses, pigs, possums, primates, and rodents. Hosts infected with arteriviruses present with a wide variety of (sub) clinical symptoms, depending on the virus causing the infection and the host being infected. In this study, we determined the complete genome sequences of three variants of a previously unknown virus found in Olivier’s shrews (Crocidura olivieri guineensis) sampled in Guinea. On the nucleotide level, the three genomes of this new virus, named Olivier’s shrew virus 1 (OSV-1), are 88–89% similar. The genome organization of OSV-1 is characteristic of all known arteriviruses, yet phylogenetic analysis groups OSV-1 separately from all currently established arterivirus lineages. Therefore, we postulate that OSV-1 represents a member of a novel arterivirus genus. The virus described here represents the first discovery of an arterivirus in members of the order Eulipotyphla, thereby greatly expanding the known host spectrum of arteriviruses.