Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph C. Shields is active.

Publication


Featured researches published by Joseph C. Shields.


Monthly Notices of the Royal Astronomical Society | 2012

Berkeley Supernova Ia Program - I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae

Jeffrey M. Silverman; Ryan J. Foley; Alexei V. Filippenko; Mohan Ganeshalingam; Aaron J. Barth; Ryan Chornock; Christopher V. Griffith; Jason Kong; N. Lee; Douglas C. Leonard; Thomas Matheson; Emily G. Miller; Thea N. Steele; Brian J. Barris; Joshua S. Bloom; Bethany Elisa Cobb; Alison L. Coil; Louis-Benoit Desroches; Elinor L. Gates; Luis C. Ho; Saurabh W. Jha; M. T. Kandrashoff; Weidong Li; Kaisey S. Mandel; Maryam Modjaz; Matthew R. Moore; Robin E. Mostardi; M. Papenkova; S.-J. Park; Daniel A. Perley

In this first paper in a series, we present 1298 low-redshift (z ≲ 0.2) optical spectra of 582 Type Ia supernovae (SNe Ia) observed from 1989 to 2008 as part of the Berkeley Supernova Ia Program (BSNIP). 584 spectra of 199 SNe Ia have well-calibrated light curves with measured distance moduli, and many of the spectra have been corrected for host-galaxy contamination. Most of the data were obtained using the Kast double spectrograph mounted on the Shane 3 m telescope at Lick Observatory and have a typical wavelength range of 3300–10 400 A, roughly twice as wide as spectra from most previously published data sets. We present our observing and reduction procedures, and we describe the resulting SN Database, which will be an online, public, searchable data base containing all of our fully reduced spectra and companion photometry. In addition, we discuss our spectral classification scheme (using the SuperNova IDentification code, snid; Blondin & Tonry), utilizing our newly constructed set of snid spectral templates. These templates allow us to accurately classify our entire data set, and by doing so we are able to reclassify a handful of objects as bona fide SNe Ia and a few other objects as members of some of the peculiar SN Ia subtypes. In fact, our data set includes spectra of nearly 90 spectroscopically peculiar SNe Ia. We also present spectroscopic host-galaxy redshifts of some SNe Ia where these values were previously unknown. The sheer size of the BSNIP data set and the consistency of our observation and reduction methods make this sample unique among all other published SN Ia data sets and complementary in many ways to the large, low-redshift SN Ia spectra presented by Matheson et al. and Blondin et al. In other BSNIP papers in this series, we use these data to examine the relationships between spectroscopic characteristics and various observables such as photometric and host-galaxy properties.


The Astrophysical Journal | 2013

The structure of the broad-line region in active galactic nuclei. I. Reconstructed velocity-delay maps

C. J. Grier; Bradley M. Peterson; K. Horne; Misty C. Bentz; Richard W. Pogge; K. D. Denney; G. De Rosa; Paul Martini; C. S. Kochanek; Ying Zu; B. J. Shappee; Robert J. Siverd; Thomas G. Beatty; S. G. Sergeev; Shai Kaspi; C. Araya Salvo; Jonathan C. Bird; D. J. Bord; G. A. Borman; Xiao Che; Chien-Ting J. Chen; Seth A. Cohen; Matthias Dietrich; V. T. Doroshenko; Yu. S. Efimov; N. Free; I. Ginsburg; C. B. Henderson; Ashley L. King; K. Mogren

We present velocity-resolved reverberation results for five active galactic nuclei. We recovered velocity-delay maps using the maximum entropy method for four objects: Mrk 335, Mrk 1501, 3C?120, and PG?2130+099. For the fifth, Mrk 6, we were only able to measure mean time delays in different velocity bins of the H? emission line. The four velocity-delay maps show unique dynamical signatures for each object. For 3C?120, the Balmer lines show kinematic signatures consistent with both an inclined disk and infalling gas, but the He II??4686 emission line is suggestive only of inflow. The Balmer lines in Mrk 335, Mrk 1501, and PG?2130+099 show signs of infalling gas, but the He II emission in Mrk 335 is consistent with an inclined disk. We also see tentative evidence of combined virial motion and infalling gas from the velocity-binned analysis of Mrk 6. The maps for 3C?120 and Mrk 335 are two of the most clearly defined velocity-delay maps to date. These maps constitute a large increase in the number of objects for which we have resolved velocity-delay maps and provide evidence supporting the reliability of reverberation-based black hole mass measurements.


Monthly Notices of the Royal Astronomical Society | 2011

Variability in quasar broad absorption line outflows – I. Trends in the short-term versus long-term data

Daniel M. Capellupo; Fred Hamann; Joseph C. Shields; P. Rodríguez Hidalgo; Tom A. Barlow

Broad absorption lines (BALs) in quasar spectra identify high-velocity outflows that likely exist in all quasars and could play a major role in feedback to galaxy evolution. The variability of BALs can help us understand the structure, evolution and basic physical properties of the outflows. Here we report on our first results from an ongoing BAL monitoring campaign of a sample of 24 luminous quasars at redshifts 1.2 < z < 2.9, focusing on C iv λ1549 BAL variability in two different time intervals: 4–9 months (short term) and 3.8–7.7 yr (long term) in the quasar rest frame. We find that 39 per cent (7/18) of the quasars varied in the short-term data, whereas 65 per cent (15/23) varied in the long-term data, with a larger typical change in strength in the long-term data. The variability occurs typically in only portions of the BAL troughs. The components at higher outflow velocities are more likely to vary than those at lower velocities, and weaker BALs are more likely to vary than stronger BALs. The fractional change in BAL strength correlates inversely with the strength of the BAL feature, but does not correlate with the outflow velocity. Both the short-term and long-term data indicate the same trends. The observed behaviour is most readily understood as a result of the movement of clouds across the continuum source. If the crossing speeds do not exceed the local Keplerian velocity, then the observed short-term variations imply that the absorbers are <6 pc from the central quasar.


Monthly Notices of the Royal Astronomical Society | 2013

Variability in quasar broad absorption line outflows – III. What happens on the shortest time-scales?

Daniel M. Capellupo; Fred Hamann; Joseph C. Shields; Jules P. Halpern; Tom A. Barlow

Broad absorption lines (BALs) in quasar spectra are prominent signatures of high-velocity outflows, which might be present in all quasars and could be a major contributor to feedback to galaxy evolution. Studying the variability in these BALs allows us to further our understanding of the structure, evolution and basic physical properties of the outflows. This is the third paper in a series on a monitoring programme of 24 luminous BAL quasars at redshifts 1.2 < z < 2.9. We focus here on the time-scales of variability in C iv λ1549 BALs in our full multi-epoch sample, which covers time-scales from 0.02 to 8.7 yr in the quasar rest frame. Our sample contains up to 13 epochs of data per quasar, with an average of seven epochs per quasar. We find that both the incidence and the amplitude of variability are greater across longer time-scales. Part of our monitoring programme specifically targeted half of these BAL quasars at rest-frame time-scales ≤2 months. This revealed variability down to the shortest time-scales we probe (8–10 d). Observed variations in only portions of BAL troughs or in lines that are optically thick suggest that at least some of these changes are caused by clouds (or some type of outflow substructures) moving across our lines of sight. In this crossing cloud scenario, the variability times constrain both the crossing speeds and the absorber locations. Specific results also depend on the emission and absorption geometries. We consider a range of geometries and use Keplerian rotational speeds to derive a general relationship between the variability times, crossing speeds and outflow locations. Typical variability times of the order of ∼1 yr indicate crossing speeds of a few thousand km s^(−1) and radial distances ∼1 pc from the central black hole. However, the most rapid BAL changes occurring in 8–10 d require crossing speeds of 17 000–84 000 km s^(−1) and radial distances of only 0.001–0.02 pc. These speeds are similar to or greater than the observed radial outflow speeds, and the inferred locations are within the nominal radius of the broad emission-line region.


The Astrophysical Journal | 2008

An Accreting Black Hole in the Nuclear Star Cluster of the Bulgeless Galaxy NGC 1042

Joseph C. Shields; C. Jakob Walcher; Torsten Böker; Luis C. Ho; Hans-Walter Rix; Roeland P. van der Marel

We present spectroscopic evidence for a low-luminosity, low-excitation active galactic nucleus (AGN) in NGC 1042, powered by an intermediate-mass black hole. These findings are significant in that the AGN is coincident with a compact star cluster known to reside in the nucleus, thus providing an example where the two types of central mass concentration coexist. The existence of a central black hole is additionally remarkable in that NGC 1042 lacks a stellar bulge. Objects such as NGC 1042 may have an important role in testing theories for the genesis of massive black holes in galaxy nuclei, and the extent to which they are in symbiosis with the larger stellar host.


The Astrophysical Journal | 2012

A REVERBERATION LAG FOR THE HIGH-IONIZATION COMPONENT OF THE BROAD-LINE REGION IN THE NARROW-LINE SEYFERT 1 Mrk 335

C. J. Grier; Bradley M. Peterson; Richard W. Pogge; K. D. Denney; Misty C. Bentz; Paul Martini; S. G. Sergeev; Shai Kaspi; Ying Zu; C. S. Kochanek; Benjamin J. Shappee; K. Z. Stanek; C. Araya Salvo; Thomas G. Beatty; Jonathan C. Bird; D. J. Bord; G. A. Borman; Xiao Che; Chien-Ting J. Chen; Seth A. Cohen; Matthias Dietrich; V. T. Doroshenko; Yu. S. Efimov; N. Free; I. Ginsburg; C. B. Henderson; K. Horne; Ashley L. King; K. Mogren; M. Molina

We present the first results from a detailed analysis of photometric and spectrophotometric data on the narrow-line Seyfert 1 (NLS1) galaxy Mrk 335, collected over a 120 day span in the fall of 2010. From these data we measure the lag in the He II {lambda}4686 broad emission line relative to the optical continuum to be 2.7 {+-} 0.6 days and the lag in the H{beta}{lambda}4861 broad emission line to be 13.9 {+-} 0.9 days. Combined with the line width, the He II lag yields a black hole mass M{sub BH} = (2.6 {+-} 0.8) Multiplication-Sign 10{sup 7} M{sub Sun }. This measurement is consistent with measurements made using the H{beta}{lambda}4861 line, suggesting that the He II emission originates in the same structure as H{beta}, but at a much smaller radius. This constitutes the first robust lag measurement for a high-ionization line in an NLS1 galaxy and supports a scenario in which the He II emission originates from gas in virial motion rather than outflow.


The Astrophysical Journal | 2008

The Mid-Infrared Properties of X-Ray Sources

Varoujan Gorjian; Mark Brodwin; C. S. Kochanek; S. S. Murray; D. Stern; Katherine J. Brand; Peter R. M. Eisenhardt; M. L. N. Ashby; Pauline Barmby; Michael J. I. Brown; Arjun Dey; W. Forman; Buell T. Jannuzi; C. Jones; Almus T. Kenter; Michael Andrew Pahre; Joseph C. Shields; M. Werner; S. P. Willner

We combine the results of the Spitzer IRAC Shallow Survey and the Chandra XBootes Survey of the 8.5 deg2 Bootes field of the NOAO Deep Wide-Field Survey to produce the largest comparison of mid-IR and X-ray sources to date. The comparison is limited to sources with X-ray fluxes >8 × 10−15 ergs cm−2 s−1 in the 0.5-7.0 keV range and mid-IR sources with 3.6 μm fluxes brighter than 18.4 mag (12.3 μJy). In this most sensitive IRAC band, 85% of the 3086 X-ray sources have mid-IR counterparts at an 80% confidence level based on a Bayesian matching technique. Only 2.5% of the sample have no IRAC counterpart at all based on visual inspection. Even for a smaller but a significantly deeper Chandra survey in the same field, the IRAC Shallow Survey recovers most of the X-ray sources. A majority (65%) of the Chandra sources detected in all four IRAC bands occupy a well-defined region of IRAC [3.6] − [4.5] versus [5.8] − [8.0] color-color space. These X-ray sources are likely infrared-luminous, unobscured type I AGNs with little mid-infrared flux contributed by the AGN host galaxy. Of the remaining Chandra sources, most are lower luminosity type I and type II AGNs whose mid-IR emission is dominated by the host galaxy, while approximately 5% are either Galactic stars or very local galaxies.


The Astrophysical Journal | 2014

Reverberation mapping of the Seyfert 1 galaxy NGC 7469

Bradley M. Peterson; C. J. Grier; K. Horne; Richard W. Pogge; Misty C. Bentz; G. De Rosa; K. D. Denney; Paul Martini; S. G. Sergeev; Shai Kaspi; Takeo Minezaki; Ying Zu; C. S. Kochanek; Robert J. Siverd; B. J. Shappee; C. Araya Salvo; Thomas G. Beatty; Jonathan C. Bird; D. J. Bord; G. A. Borman; Xiao Che; Chien-Ting Chen; Seth A. Cohen; M. Dietrich; V. T. Doroshenko; T. Drake; Yu. S. Efimov; N. Free; I. Ginsburg; C. B. Henderson

A large reverberation mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hbeta 4861 and He II 4686 and a central black hole mass measurement of about 10 million solar masses, consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hbeta measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hbeta-emitting broad-line region and the AGN luminosity. It was necessary to detrend the continuum and Hbeta and He II 4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.


The Astronomical Journal | 2008

HUBBLE SPACE TELESCOPE SPECTROSCOPIC OBSERVATIONS OF THE NARROW-LINE REGION IN NEARBY LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI*

Jonelle L. Walsh; Aaron J. Barth; Luis C. Ho; Alexei V. Filippenko; Hans-Walter Rix; Joseph C. Shields; Marc Sarzi; Wallace L. W. Sargent

We present Space Telescope Imaging Spectrograph observations of 14 nearby low-luminosity active galactic nuclei, including 13 LINERs and 1 Seyfert, taken at multiple parallel slit positions centered on the galaxy nuclei and covering the Hα spectral region. For each galaxy, we measure the emission-line velocities, line widths, and strengths to map out the inner narrow-line region structure -— typically within ~100 pc from the galaxy nucleus. There is a wide diversity among the velocity fields: in a few galaxies the gas is clearly in disk-like rotation, while in other galaxies the gas kinematics either appear chaotic or are dominated by radial flows with multiple velocity components. In most objects, the emission-line surface brightness distribution is very centrally peaked. The [S II] line ratio indicates a radial stratification in gas density, with a sharp increase within the inner 10-20 pc, in the majority of the Type 1 (broad-lined) objects. The electron-density gradients of the Type 1 objects exhibit a similar shape that is well fit by a power law of the form ne = n0(r/1 pc)α, where α = –0.60 ± 0.13. We examine how the [N II] λ6583 line width varies as a function of the aperture size over a range of spatial scales, extending from scales comparable to the black holes sphere of influence to scales dominated by the host galaxys bulge. For most galaxies in the sample, we find that the emission-line velocity dispersion is largest within the black holes gravitational sphere of influence, and decreases with increasing aperture size toward values similar to the bulge stellar velocity dispersion measured within ground-based apertures. We construct models of gas disks in circular rotation and show that this behavior can be consistent with virial motion, although for some combinations of disk parameters we show that the line width can increase as a function of aperture size, as observed in NGC 3245. Future dynamical modeling to determine black hole masses for a few objects in this sample may be worthwhile, although disorganized motion will limit the accuracy of the mass measurements.


The Astrophysical Journal | 2009

The Nuclear Outflows and Feedback in the Seyfert 2 Galaxy Markarian 573

Katharine J. Schlesinger; Richard W. Pogge; Paul Martini; Joseph C. Shields; Dale L. Fields

We present a study of outflow and feedback in the well known Seyfert 2 galaxy Markarian 573 using high-angular resolution long-slit spectrophotometry obtained with the Hubble Space Telescope Imaging Spectrograph (STIS). Through analysis of the kinematics and ionization state of a biconical outflow region emanating from the nucleus, we find that the outflow does not significantly accelerate the surrounding host-galaxy interstellar gas and is too weak to be a strong ionization mechanism in the extended emission regions. Instead, the excitation of the extended regions is consistent with photoionization by the active nucleus. From energetics arguments, we show that the nuclear outflow is slow and heavy and has a mechanical luminosity that is only ~1% of the estimated bolometric luminosity of the system. The energy in the outflow is able to mildly shape the gas in the extended regions but appears to be insufficient to unbind it, or even to plausibly disrupt star formation. These results are at odds with the picture of strong active galactic nuclei feedback that has been invoked to explain certain aspects of galaxy evolution.

Collaboration


Dive into the Joseph C. Shields's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge