Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph D. Mougous is active.

Publication


Featured researches published by Joseph D. Mougous.


Science | 2006

A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus.

Joseph D. Mougous; Marianne E. Cuff; Stefan Raunser; Aimee Shen; Min Zhou; Casey A. Gifford; Andrew L. Goodman; Grazyna Joachimiak; Claudia L. Ordoñez; Stephen Lory; Thomas Walz; Andrzej Joachimiak; John J. Mekalanos

Bacterial pathogens frequently use protein secretion to mediate interactions with their hosts. Here we found that a virulence locus (HSI-I) of Pseudomonas aeruginosa encodes a protein secretion apparatus. The apparatus assembled in discrete subcellular locations and exported Hcp1, a hexameric protein that forms rings with a 40 angstrom internal diameter. Regulatory patterns of HSI-I suggested that the apparatus functions during chronic infections. We detected Hcp1 in pulmonary secretions of cystic fibrosis (CF) patients and Hcp1-specific antibodies in their sera. Thus, HSI-I likely contributes to the pathogenesis of P. aeruginosa in CF patients. HSI-I–related loci are widely distributed among bacterial pathogens and may play a general role in mediating host interactions.


Cell Host & Microbe | 2010

A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria.

Rachel D. Hood; Pragya Singh; FoSheng Hsu; Tüzün Güvener; Mike A. Carl; Rex R.S. Trinidad; Julie M. Silverman; Brooks B. Ohlson; Kevin G. Hicks; Rachael L. Plemel; Mo Li; Sandra Schwarz; Wenzhuo Y. Wang; Alexey J. Merz; David R. Goodlett; Joseph D. Mougous

The functional spectrum of a secretion system is defined by its substrates. Here we analyzed the secretomes of Pseudomonas aeruginosa mutants altered in regulation of the Hcp Secretion Island-I-encoded type VI secretion system (H1-T6SS). We identified three substrates of this system, proteins Tse1-3 (type six exported 1-3), which are coregulated with the secretory apparatus and secreted under tight posttranslational control. The Tse2 protein was found to be the toxin component of a toxin-immunity system and to arrest the growth of prokaryotic and eukaryotic cells when expressed intracellularly. In contrast, secreted Tse2 had no effect on eukaryotic cells; however, it provided a major growth advantage for P. aeruginosa strains, relative to those lacking immunity, in a manner dependent on cell contact and the H1-T6SS. This demonstration that the T6SS targets a toxin to bacteria helps reconcile the structural and evolutionary relationship between the T6SS and the bacteriophage tail and spike.


Nature | 2011

Type VI secretion delivers bacteriolytic effectors to target cells

Alistair B. Russell; Rachel D. Hood; Nhat Khai Bui; Michele LeRoux; Waldemar Vollmer; Joseph D. Mougous

Peptidoglycan is the major structural constituent of the bacterial cell wall, forming a meshwork outside the cytoplasmic membrane that maintains cell shape and prevents lysis. In Gram-negative bacteria, peptidoglycan is located in the periplasm, where it is protected from exogenous lytic enzymes by the outer membrane. Here we show that the type VI secretion system of Pseudomonas aeruginosa breaches this barrier to deliver two effector proteins, Tse1 and Tse3, to the periplasm of recipient cells. In this compartment, the effectors hydrolyse peptidoglycan, thereby providing a fitness advantage for P. aeruginosa cells in competition with other bacteria. To protect itself from lysis by Tse1 and Tse3, P. aeruginosa uses specific periplasmically localized immunity proteins. The requirement for these immunity proteins depends on intercellular self-intoxication through an active type VI secretion system, indicating a mechanism for export whereby effectors do not access donor cell periplasm in transit.


Nature Reviews Microbiology | 2014

Type VI secretion system effectors: poisons with a purpose

Alistair B. Russell; S. Brook Peterson; Joseph D. Mougous

The type VI secretion system (T6SS) mediates interactions between a broad range of Gram-negative bacterial species. Recent studies have led to a substantial increase in the number of characterized T6SS effector proteins and a more complete and nuanced view of the adaptive importance of the system. Although the T6SS is most often implicated in antagonism, in this Review, we consider the case for its involvement in both antagonistic and non-antagonistic behaviours. Clarifying the roles that type VI secretion has in microbial communities will contribute to broader efforts to understand the importance of microbial interactions in maintaining human and environmental health, and will inform efforts to manipulate these interactions for therapeutic or environmental benefit.


PLOS Pathogens | 2010

Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions.

Sandra Schwarz; T. Eoin West; Frédéric Boyer; Wen Chi Chiang; Mike A. Carl; Rachel D. Hood; Laurence Rohmer; Tim Tolker-Nielsen; Shawn J. Skerrett; Joseph D. Mougous

Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs) of Burkholderia thailandensis (B. thai) in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans—leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections.


Proceedings of the National Academy of Sciences of the United States of America | 2008

In vitro self-assembly of tailorable nanotubes from a simple protein building block

Edward R. Ballister; Angela H. Lai; Ronald N. Zuckermann; Yifan Cheng; Joseph D. Mougous

We demonstrate a method for generating discretely structured protein nanotubes from the simple ring-shaped building block, homohexameric Hcp1 from Pseudomonas aeruginosa. Our design exploited the observation that the crystal lattice of Hcp1 contains rings stacked in a repeating head-to-tail pattern. High-resolution detail of the ring–ring interface allowed the selection of sites for specific cysteine mutations capable of engaging in disulfide bond formation across rings, thereby generating stable Hcp1 nanotubes. Protein nanotubes containing up to 25 subunits (≈100 nm in length) were self-assembled under simple conditions. Furthermore, we demonstrate that the tube ends and interior can be independently and specifically functionalized to generate nanocapsules.


Annual Review of Microbiology | 2012

Structure and Regulation of the Type VI Secretion System

Julie M. Silverman; Yannick R. Brunet; Eric Cascales; Joseph D. Mougous

The type VI secretion system (T6SS) is a complex and widespread gram-negative bacterial export pathway with the capacity to translocate protein effectors into a diversity of target cell types. Current structural models of the T6SS indicate that the apparatus is composed of at least two complexes, a dynamic bacteriophage-like structure and a cell-envelope-spanning membrane-associated assembly. How these complexes interact to promote effector secretion and cell targeting remains a major question in the field. As a contact-dependent pathway with specific cellular targets, the T6SS is subject to tight regulation. Thus, the identification of regulatory elements that control T6S expression continues to shape our understanding of the environmental circumstances relevant to its function. This review discusses recent progress toward characterizing T6S structure and regulation.


Proceedings of the National Academy of Sciences of the United States of America | 2003

MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence

Scott E. Converse; Joseph D. Mougous; Michael D. Leavell; Julie A. Leary; Carolyn R. Bertozzi; Jeffery S. Cox

Mycobacterium tuberculosis, the causative agent of human tuberculosis, is unique among bacterial pathogens in that it displays a wide array of complex lipids and lipoglycans on its cell surface. One of the more remarkable lipids is a sulfated glycolipid, termed sulfolipid-1 (SL-1), which is thought to mediate specific host-pathogen interactions during infection. However, a direct role for SL-1 in M. tuberculosis virulence has not been established. Here we show that MmpL8, a member of a large family of predicted lipid transporters in M. tuberculosis, is required for SL-1 production. The accumulation of an SL-1 precursor, termed SL1278, in mmpL8 mutant cells indicates that MmpL8 is necessary for an intermediate step in the SL-1 biosynthesis pathway. We use a novel fractionation procedure to demonstrate that SL-1 is present on the cell surface, whereas SL1278 is found exclusively in more internal layers. Importantly, we show that mmpL8 mutants are attenuated for growth in a mouse model of tuberculosis. However, SL-1 per se is not required for establishing infection as pks2 mutants, which are defective in an earlier step in SL-1 biosynthesis, have no obvious growth defect. Thus, we hypothesize that either MmpL8 transports molecules in addition to SL-1 that mediate host-pathogen interactions or the accumulation of SL1278 in mmpL8 mutant cells interferes with other pathways required for growth during the early stages of infection.


Nature | 2013

Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors

Alistair B. Russell; Michele LeRoux; Krisztina Hathazi; Danielle M. Agnello; Takahiko Ishikawa; Paul A. Wiggins; Sun Nyunt Wai; Joseph D. Mougous

Membranes allow the compartmentalization of biochemical processes and are therefore fundamental to life. The conservation of the cellular membrane, combined with its accessibility to secreted proteins, has made it a common target of factors mediating antagonistic interactions between diverse organisms. Here we report the discovery of a diverse superfamily of bacterial phospholipase enzymes. Within this superfamily, we defined enzymes with phospholipase A1 and A2 activity, which are common in host-cell-targeting bacterial toxins and the venoms of certain insects and reptiles. However, we find that the fundamental role of the superfamily is to mediate antagonistic bacterial interactions as effectors of the type VI secretion system (T6SS) translocation apparatus; accordingly, we name these proteins type VI lipase effectors. Our analyses indicate that PldA of Pseudomonas aeruginosa, a eukaryotic-like phospholipase D, is a member of the type VI lipase effector superfamily and the founding substrate of the haemolysin co-regulated protein secretion island II T6SS (H2-T6SS). Although previous studies have specifically implicated PldA and the H2-T6SS in pathogenesis, we uncovered a specific role for the effector and its secretory machinery in intra- and interspecies bacterial interactions. Furthermore, we find that this effector achieves its antibacterial activity by degrading phosphatidylethanolamine, the major component of bacterial membranes. The surprising finding that virulence-associated phospholipases can serve as specific antibacterial effectors suggests that interbacterial interactions are a relevant factor driving the continuing evolution of pathogenesis.


Molecular Cell | 2013

Haemolysin Coregulated Protein Is an Exported Receptor and Chaperone of Type VI Secretion Substrates

Julie M. Silverman; Danielle M. Agnello; Hongjin Zheng; Benjamin T. Andrews; Mo Li; Carlos Enrique Catalano; Tamir Gonen; Joseph D. Mougous

Secretion systems require high-fidelity mechanisms to discriminate substrates among the vast cytoplasmic pool of proteins. Factors mediating substrate recognition by the type VI secretion system (T6SS) of Gram-negative bacteria, a widespread pathway that translocates effector proteins into target bacterial cells, have not been defined. We report that haemolysin coregulated protein (Hcp), a ring-shaped hexamer secreted by all characterized T6SSs, binds specifically to cognate effector molecules. Electron microscopy analysis of an Hcp-effector complex from Pseudomonas aeruginosa revealed the effector bound to the inner surface of Hcp. Further studies demonstrated that interaction with the Hcp pore is a general requirement for secretion of diverse effectors encompassing several enzymatic classes. Though previous models depict Hcp as a static conduit, our data indicate it is a chaperone and receptor of substrates. These unique functions of a secreted protein highlight fundamental differences between the export mechanism of T6 and other characterized secretory pathways.

Collaboration


Dive into the Joseph D. Mougous's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michele LeRoux

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel D. Hood

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee W. Riley

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge