Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Young Ah Goo is active.

Publication


Featured researches published by Young Ah Goo.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Coordinate regulation of energy transduction modules in Halobacterium sp. analyzed by a global systems approach

Nitin S. Baliga; Min Pan; Young Ah Goo; Eugene C. Yi; David R. Goodlett; Krassen Dimitrov; Paul Shannon; Ruedi Aebersold; Wailap Victor Ng; Leroy Hood

The extremely halophilic archaeon Halobacterium NRC-1 can switch from aerobic energy production (energy from organic compounds) to anaerobic phototrophy (energy from light) by induction of purple membrane biogenesis. The purple membrane is made up of multiple copies of a 1:1 complex of bacterioopsin (Bop) and retinal called bacteriorhodopsin that functions as a light-driven proton pump. A light- and redox-sensing transcription regulator, Bat, regulates critical genes encoding the biogenesis of the purple membrane. To better understand the regulatory network underlying this physiological state, we report a systems approach using global mRNA and protein analyses of four strains of Halobacterium sp.: the wild-type, NRC-1; and three genetically perturbed strains: S9 (bat+), a purple membrane overproducer, and two purple membrane deficient strains, SD23 (a bop knockout) and SD20 (a bat knockout). The integrated DNA microarray and proteomic data reveal the coordinated coregulation of several interconnected biochemical pathways for phototrophy: isoprenoid synthesis, carotenoid synthesis, and bacteriorhodopsin assembly. In phototrophy, the second major biomodule for ATP production, arginine fermentation, is repressed. The primary systems level insight provided by this study is that two major energy production pathways in Halobacterium sp., phototrophy and arginine fermentation, are inversely regulated, presumably to achieve a balance in ATP production under anaerobic conditions.


Cell Host & Microbe | 2014

A Type VI Secretion-Related Pathway in Bacteroidetes Mediates Interbacterial Antagonism

Alistair B. Russell; Aaron G. Wexler; Brittany N. Harding; John C. Whitney; Alan J. Bohn; Young Ah Goo; Bao Q. Tran; Natasha A. Barry; Hongjin Zheng; S. Brook Peterson; Seemay Chou; Tamir Gonen; David R. Goodlett; Andrew L. Goodman; Joseph D. Mougous

Bacteroidetes are a phylum of Gram-negative bacteria abundant in mammalian-associated polymicrobial communities, where they impact digestion, immunity, and resistance to infection. Despite the extensive competition at high cell density that occurs in these settings, cell contact-dependent mechanisms of interbacterial antagonism, such as the type VI secretion system (T6SS), have not been defined in this group of organisms. Herein we report the bioinformatic and functional characterization of a T6SS-like pathway in diverse Bacteroidetes. Using prominent human gut commensal and soil-associated species, we demonstrate that these systems localize dynamically within the cell, export antibacterial proteins, and target competitor bacteria. The Bacteroidetes system is a distinct pathway with marked differences in gene content and high evolutionary divergence from the canonical T6S pathway. Our findings offer a potential molecular explanation for the abundance of Bacteroidetes in polymicrobial environments, the observed stability of Bacteroidetes in healthy humans, and the barrier presented by the microbiota against pathogens.


Molecular Microbiology | 2000

Is gene expression in Halobacterium NRC-1 regulated by multiple TBP and TFB transcription factors?

Nitin S. Baliga; Young Ah Goo; Wailap Victor Ng; Leroy Hood; Charles J. Daniels; Shiladitya DasSarma

Sir, Gene expression is regulated by different mechanisms in different organisms. The bacterial core RNA polymerase (a2bb 0) discriminates between subsets of promoters by binding different s factors. Eukaryotes have evolved a more complicated system making use of three RNA polymerases to direct synthesis from different promoter families. Archaea possess a simplified version of RNA polymerase II transcription machinery with a single multisubunit RNA polymerase and a subset, TBP and TFIIB, of general transcription factors (Reeve et al., 1997, Cell 89: 999±1002). However, multiple transcription factor homologues have been identified in several archaea including Halobacterium NRC-1 (Ng et al., 1998, Genome Res 8: 1131±1141), Haloferax volcanii (Thompson et al., 1999, Mol Microbiol 33: 1081±1092) and Pyrococcus horikoshii OT3 (Kawarabayasi et al., 1998, DNA Res 5: 147±155). With the impending completion of the Halobacterium NRC-1 genome project, this extreme halophile is turning out to be a champion of multiple transcription factors, with six tbp and seven tfb genes (http://zdna.micro. umass.edu/haloweb).


Nature Biotechnology | 2008

Minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE)

Eric W. Deutsch; Catherine A. Ball; Jules J. Berman; G. Steven Bova; Alvis Brazma; Roger E. Bumgarner; David N. Campbell; Helen C. Causton; Jeffrey H. Christiansen; Fabrice Daian; Delphine Dauga; Duncan Davidson; Gregory Gimenez; Young Ah Goo; Sean M. Grimmond; Thorsten Henrich; Bernhard G. Herrmann; Michael H. Johnson; Martin Korb; Jason C. Mills; Asa Oudes; Helen Parkinson; Laura E. Pascal; Nicolas Pollet; John Quackenbush; Mirana Ramialison; Martin Ringwald; David Salgado; Susanna-Assunta Sansone; Gavin Sherlock

One purpose of the biomedical literature is to report results in sufficient detail that the methods of data collection and analysis can be independently replicated and verified. Here we present reporting guidelines for gene expression localization experiments: the minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE). MISFISHIE is modeled after the Minimum Information About a Microarray Experiment (MIAME) specification for microarray experiments. Both guidelines define what information should be reported without dictating a format for encoding that information. MISFISHIE describes six types of information to be provided for each experiment: experimental design, biomaterials and treatments, reporters, staining, imaging data and image characterizations. This specification has benefited the consortium within which it was developed and is expected to benefit the wider research community. We welcome feedback from the scientific community to help improve our proposal.


Molecular Microbiology | 2014

Genetically distinct pathways guide effector export through the type VI secretion system

John C. Whitney; Christina M. Beck; Young Ah Goo; Alistair B. Russell; Brittany N. Harding; Justin A. De Leon; David A. Cunningham; Bao Q. Tran; David A. Low; David R. Goodlett; Christopher S. Hayes; Joseph D. Mougous

Bacterial secretion systems often employ molecular chaperones to recognize and facilitate export of their substrates. Recent work demonstrated that a secreted component of the type VI secretion system (T6SS), haemolysin co‐regulated protein (Hcp), binds directly to effectors, enhancing their stability in the bacterial cytoplasm. Herein, we describe a quantitative cellular proteomics screen for T6S substrates that exploits this chaperone‐like quality of Hcp. Application of this approach to the Hcp secretion island I‐encoded T6SS (H1‐T6SS) of Pseudomonas aeruginosa led to the identification of a novel effector protein, termed Tse4 (type VI secretion exported 4), subsequently shown to act as a potent intra‐specific H1‐T6SS‐delivered antibacterial toxin. Interestingly, our screen failed to identify two predicted H1‐T6SS effectors, Tse5 and Tse6, which differ from Hcp‐stabilized substrates by the presence of toxin‐associated PAAR‐repeat motifs and genetic linkage to members of the valine‐glycine repeat protein G (vgrG) genes. Genetic studies further distinguished these two groups of effectors: Hcp‐stabilized effectors were found to display redundancy in interbacterial competition with respect to the requirement for the two H1‐T6SS‐exported VgrG proteins, whereas Tse5 and Tse6 delivery strictly required a cognate VgrG. Together, we propose that interaction with either VgrG or Hcp defines distinct pathways for T6S effector export.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Human symbionts inject and neutralize antibacterial toxins to persist in the gut

Aaron G. Wexler; Yiqiao Bao; John C. Whitney; Joao B. Xavier; Whitman B. Schofield; Natasha A. Barry; Alistair B. Russell; Bao Q. Tran; Young Ah Goo; David R. Goodlett; Howard Ochman; Joseph D. Mougous; Andrew L. Goodman

Significance The microbial community in the human gut represents one of the densest known ecosystems. Community composition has broad impacts on health, and metabolic competition and host selection have both been implicated in shaping these communities. Here, we report that contact-dependent bacterial antagonism also determines the ability of human gut symbionts to persist in the microbiome. Simplified microbiomes, assembled in gnotobiotic mice, reveal effector transmission rates exceeding 1 billion events per minute per gram of colonic contents. Together, these results suggest that human gut symbionts define their closest competitors not only metabolically but also spatially. Moreover, strains within a single species can encode diverse effectors that may provide new avenues for shaping the microbiome to improve human health. The human gut microbiome is a dynamic and densely populated microbial community that can provide important benefits to its host. Cooperation and competition for nutrients among its constituents only partially explain community composition and interpersonal variation. Notably, certain human-associated Bacteroidetes—one of two major phyla in the gut—also encode machinery for contact-dependent interbacterial antagonism, but its impact within gut microbial communities remains unknown. Here we report that prominent human gut symbionts persist in the gut through continuous attack on their immediate neighbors. Our analysis of just one of the hundreds of species in these communities reveals 12 candidate antibacterial effector loci that can exist in 32 combinations. Through the use of secretome studies, in vitro bacterial interaction assays and multiple mouse models, we uncover strain-specific effector/immunity repertoires that can predict interbacterial interactions in vitro and in vivo, and find that some of these strains avoid contact-dependent killing by accumulating immunity genes to effectors that they do not encode. Effector transmission rates in live animals can exceed 1 billion events per minute per gram of colonic contents, and multiphylum communities of human gut commensals can partially protect sensitive strains from these attacks. Together, these results suggest that gut microbes can determine their interactions through direct contact. An understanding of the strategies human gut symbionts have evolved to target other members of this community may provide new approaches for microbiome manipulation.


Cell | 2015

An Interbacterial NAD(P)+ Glycohydrolase Toxin Requires Elongation Factor Tu for Delivery to Target Cells

John C. Whitney; Dennis Quentin; Shin Sawai; Michele LeRoux; Brittany N. Harding; Hannah E. Ledvina; Bao Q. Tran; Howard Robinson; Young Ah Goo; David R. Goodlett; Stefan Raunser; Joseph D. Mougous

Type VI secretion (T6S) influences the composition of microbial communities by catalyzing the delivery of toxins between adjacent bacterial cells. Here, we demonstrate that a T6S integral membrane toxin from Pseudomonas aeruginosa, Tse6, acts on target cells by degrading the universally essential dinucleotides NAD(+) and NADP(+). Structural analyses of Tse6 show that it resembles mono-ADP-ribosyltransferase proteins, such as diphtheria toxin, with the exception of a unique loop that both excludes proteinaceous ADP-ribose acceptors and contributes to hydrolysis. We find that entry of Tse6 into target cells requires its binding to an essential housekeeping protein, translation elongation factor Tu (EF-Tu). These proteins participate in a larger assembly that additionally directs toxin export and provides chaperone activity. Visualization of this complex by electron microscopy defines the architecture of a toxin-loaded T6S apparatus and provides mechanistic insight into intercellular membrane protein delivery between bacteria.


eLife | 2015

Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa

Michele LeRoux; Robin L. Kirkpatrick; Elena I. Montauti; Bao Q. Tran; S. Brook Peterson; Brittany N. Harding; John C. Whitney; Alistair B. Russell; Beth Traxler; Young Ah Goo; David R. Goodlett; Paul A. Wiggins; Joseph D. Mougous

The perception and response to cellular death is an important aspect of multicellular eukaryotic life. For example, damage-associated molecular patterns activate an inflammatory cascade that leads to removal of cellular debris and promotion of healing. We demonstrate that lysis of Pseudomonas aeruginosa cells triggers a program in the remaining population that confers fitness in interspecies co-culture. We find that this program, termed P. aeruginosa response to antagonism (PARA), involves rapid deployment of antibacterial factors and is mediated by the Gac/Rsm global regulatory pathway. Type VI secretion, and, unexpectedly, conjugative type IV secretion within competing bacteria, induce P. aeruginosa lysis and activate PARA, thus providing a mechanism for the enhanced capacity of P. aeruginosa to target bacteria that elaborate these factors. Our finding that bacteria sense damaged kin and respond via a widely distributed pathway to mount a complex response raises the possibility that danger sensing is an evolutionarily conserved process. DOI: http://dx.doi.org/10.7554/eLife.05701.001


BMC Urology | 2007

Molecular and cellular characterization of ABCG2 in the prostate

Laura E. Pascal; Asa Oudes; Timothy W Petersen; Young Ah Goo; Laura S Walashek; Lawrence D. True; Alvin Y. Liu

BackgroundIdentification and characterization of the prostate stem cell is important for understanding normal prostate development and carcinogenesis. The flow cytometry-based side population (SP) technique has been developed to isolate putative adult stem cells in several human tissue types including the prostate. This phenotype is mainly mediated by the ATP-binding cassette membrane transporter ABCG2.MethodsImmunolocalization of ABCG2 was performed on normal prostate tissue obtained from radical prostatectomies. Normal human prostate SP cells and ABCG2+ cells were isolated and gene expression was determined with DNA array analysis and RT-PCR. Endothelial cells were removed by pre-sorting with CD31.ResultsABCG2 positive cells were localized to the prostate basal epithelium and endothelium. ABCG2+ cells in the basal epithelium constituted less than 1% of the total basal cell population. SP cells constituted 0.5–3% of the total epithelial fraction. The SP transcriptome was essentially the same as ABCG2+ and both populations expressed genes indicative of a stem cell phenotype, however, the cells also expressed many genes in common with endothelial cells.ConclusionThese results provide gene expression profiles for the prostate SP and ABCG2+ cells that will be critical for studying normal development and carcinogenesis, in particular as related to the cancer stem cell concept.


Molecular & Cellular Proteomics | 2003

Proteomic Analysis of an Extreme Halophilic Archaeon, Halobacterium sp. NRC-1

Young Ah Goo; Eugene C. Yi; Nitin S. Baliga; Weiguo A. Tao; Min Pan; Ruedi Aebersold; David R. Goodlett; Leroy Hood; Wailap Victor Ng

Halobacterium sp. NRC-1 insoluble membrane and soluble cytoplasmic proteins were isolated by ultracentrifugation of whole cell lysate. Using an ion trap mass spectrometer equipped with a C18 trap electrospray ionization emitter/micro-liquid chromatography column, a number of trypsin-generated peptide tags from 426 unique proteins were identified. This represents approximately one-fifth of the theoretical proteome of Halobacterium. Of these, 232 proteins were found only in the soluble fraction, 165 were only in the insoluble membrane fraction, and 29 were in both fractions. There were 72 and 61% previously annotated proteins identified in the soluble and membrane protein fractions, respectively. Interestingly, 57 of previously unannotated proteins found only in Halobacterium NRC-1 were identified. Such proteins could be interesting targets for understanding unique physiology of Halobacterium NRC-1. A group of proteins involved in various metabolic pathways were identified among the expressed proteins, suggesting these pathways were active at the time the cells were collected. This data containing a list of expressed proteins, their cellular locations, and biological functions could be used in future studies to investigate the interaction of the genes and proteins in relation to genetic or environmental perturbations.

Collaboration


Dive into the Young Ah Goo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alvin Y. Liu

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bao Q. Tran

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leroy Hood

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Min Pan

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge