Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph D. Twicken is active.

Publication


Featured researches published by Joseph D. Twicken.


Science | 2010

Kepler Planet-Detection Mission: Introduction and First Results

William J. Borucki; David G. Koch; Gibor Basri; Natalie M. Batalha; Timothy M. Brown; Douglas A. Caldwell; John C. Caldwell; Jørgen Christensen-Dalsgaard; William D. Cochran; Edna DeVore; Edward W. Dunham; Andrea K. Dupree; Thomas Gautier; John C. Geary; Ronald L. Gilliland; Alan Gould; Steve B. Howell; Jon M. Jenkins; Y. Kondo; David W. Latham; Geoffrey W. Marcy; Soren Meibom; Hans Kjeldsen; Jack J. Lissauer; David G. Monet; David R. Morrison; Dimitar D. Sasselov; Jill Tarter; Alan P. Boss; D. E. Brownlee

Detecting Distant Planets More than 400 planets have been detected outside the solar system, most of which have masses similar to that of the gas giant planet, Jupiter. Borucki et al. (p. 977, published online 7 January) summarize the planetary findings derived from the first six weeks of observations with the Kepler mission whose objective is to search for and determine the frequency of Earth-like planets in the habitable zones of other stars. The results include the detection of five new exoplanets, which confirm the existence of planets with densities substantially lower than those predicted for gas giant planets. Initial observations confirm the existence of planets with densities lower than those predicted for gas giant planets. The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.


The Astrophysical Journal | 2011

Characteristics of planetary candidates observed by Kepler II : Analysis of the first four months of data

William J. Borucki; David G. Koch; Gibor Basri; Natalie M. Batalha; Timothy M. Brown; Stephen T. Bryson; Douglas A. Caldwell; Jørgen Christensen-Dalsgaard; William D. Cochran; Edna DeVore; Edward W. Dunham; Thomas N. Gautier; John C. Geary; Ronald L. Gilliland; Alan Gould; Steve B. Howell; Jon M. Jenkins; David W. Latham; Jack J. Lissauer; Geoffrey W. Marcy; Jason F. Rowe; Dimitar D. Sasselov; Alan P. Boss; David Charbonneau; David R. Ciardi; Laurance R. Doyle; Andrea K. Dupree; Eric B. Ford; Jonathan J. Fortney; Matthew J. Holman

On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates are separated into five class sizes: 68 candidates of approximately Earth-size (R_p < 1.25 R_⊕), 288 super-Earth-size (1.25 R_⊕ ≤ R_p < 2 R_⊕), 662 Neptune-size (2 R_⊕ ≤ R_p < 6 R_⊕), 165 Jupiter-size (6 R_⊕ ≤ R_p < 15 R_⊕), and 19 up to twice the size of Jupiter (15 R_⊕ ≤ R_p < 22 R_⊕). In the temperature range appropriate for the habitable zone, 54 candidates are found with sizes ranging from Earth-size to larger than that of Jupiter. Six are less than twice the size of the Earth. Over 74% of the planetary candidates are smaller than Neptune. The observed number versus size distribution of planetary candidates increases to a peak at two to three times the Earth-size and then declines inversely proportional to the area of the candidate. Our current best estimates of the intrinsic frequencies of planetary candidates, after correcting for geometric and sensitivity biases, are 5% for Earth-size candidates, 8% for super-Earth-size candidates, 18% for Neptune-size candidates, 2% for Jupiter-size candidates, and 0.1% for very large candidates; a total of 0.34 candidates per star. Multi-candidate, transiting systems are frequent; 17% of the host stars have multi-candidate systems, and 34% of all the candidates are part of multi-candidate systems.


Astrophysical Journal Supplement Series | 2013

Planetary Candidates Observed by Kepler III: Analysis of the First 16 Months of Data

Natalie M. Batalha; Jason F. Rowe; Stephen T. Bryson; Christopher J. Burke; Douglas A. Caldwell; Jessie L. Christiansen; Fergal Mullally; Susan E. Thompson; Timothy M. Brown; Andrea K. Dupree; Daniel C. Fabrycky; Eric B. Ford; Jonathan J. Fortney; Ronald L. Gilliland; Howard Isaacson; David W. Latham; Geoffrey W. Marcy; Samuel N. Quinn; Darin Ragozzine; Avi Shporer; William J. Borucki; David R. Ciardi; Thomas N. Gautier; Michael R. Haas; Jon M. Jenkins; David G. Koch; Jack J. Lissauer; William Rapin; Gibor Basri; Alan P. Boss

New transiting planet candidates are identified in 16 months (2009 May-2010 September) of data from the Kepler spacecraft. Nearly 5000 periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1108 viable new planet candidates, bringing the total count up to over 2300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis that identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R_P/R_★), reduced semimajor axis (d/R_★), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (201% for candidates smaller than 2 R_⊕ compared to 53% for candidates larger than 2 R_⊕) and those at longer orbital periods (124% for candidates outside of 50 day orbits versus 86% for candidates inside of 50 day orbits). The gains are larger than expected from increasing the observing window from 13 months (Quarters 1-5) to 16 months (Quarters 1-6) even in regions of parameter space where one would have expected the previous catalogs to be complete. Analyses of planet frequencies based on previous catalogs will be affected by such incompleteness. The fraction of all planet candidate host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the habitable zone are forthcoming if, indeed, such planets are abundant.


The Astrophysical Journal | 2010

Kepler Mission Design, Realized Photometric Performance, and Early Science

David G. Koch; William J. Borucki; Gibor Basri; Natalie M. Batalha; Timothy M. Brown; Douglas A. Caldwell; Joergen Christensen-Dalsgaard; William D. Cochran; Edna DeVore; Edward W. Dunham; Thomas N. Gautier; John C. Geary; Ronald L. Gilliland; Alan Gould; Jon M. Jenkins; Y. Kondo; David W. Latham; Jack J. Lissauer; Geoffrey W. Marcy; David G. Monet; Dimitar D. Sasselov; Alan P. Boss; D. E. Brownlee; John Caldwell; Andrea K. Dupree; Steve B. Howell; Hans Kjeldsen; Soeren Meibom; David Morrison; Tobias Owen

The Kepler Mission, launched on 2009 March 6, was designed with the explicit capability to detect Earth-size planets in the habitable zone of solar-like stars using the transit photometry method. Results from just 43 days of data along with ground-based follow-up observations have identified five new transiting planets with measurements of their masses, radii, and orbital periods. Many aspects of stellar astrophysics also benefit from the unique, precise, extended, and nearly continuous data set for a large number and variety of stars. Early results for classical variables and eclipsing stars show great promise. To fully understand the methodology, processes, and eventually the results from the mission, we present the underlying rationale that ultimately led to the flight and ground system designs used to achieve the exquisite photometric performance. As an example of the initial photometric results, we present variability measurements that can be used to distinguish dwarf stars from red giants.


Publications of the Astronomical Society of the Pacific | 2014

The K2 Mission: Characterization and Early Results

Steve B. Howell; Charlie Sobeck; Michael R. Haas; Martin Still; Fergal Mullally; John Troeltzsch; S. Aigrain; Stephen T. Bryson; Doug Caldwell; W. J. Chaplin; William D. Cochran; Daniel Huber; Geoffrey W. Marcy; A. Miglio; Joan R. Najita; Marcie Smith; Joseph D. Twicken; Jonathan J. Fortney

The K2 mission will make use of the Kepler spacecraft and its assets to expand upon Keplers groundbreaking discoveries in the fields of exoplanets and astrophysics through new and exciting observations. K2 will use an innovative way of operating the spacecraft to observe target fields along the ecliptic for the next 2-3 years. Early science commissioning observations have shown an estimated photometric precision near 400 ppm in a single 30 minute observation, and a 6-hr photometric precision of 80 ppm (both at V = 12). The K2 mission offers long-term, simultaneous optical observation of thousands of objects at a precision far better than is achievable from ground-based telescopes. Ecliptic fields will be observed for approximately 75 days enabling a unique exoplanet survey which fills the gaps in duration and sensitivity between the Kepler and TESS missions, and offers pre-launch exoplanet target identification for JWST transit spectroscopy. Astrophysics observations with K2 will include studies of young open clusters, bright stars, galaxies, supernovae, and asteroseismology.


The Astrophysical Journal | 2011

KEPLER'S FIRST ROCKY PLANET: KEPLER-10b*

Natalie M. Batalha; William J. Borucki; Stephen T. Bryson; Lars A. Buchhave; Douglas A. Caldwell; Jørgen Christensen-Dalsgaard; David R. Ciardi; Edward W. Dunham; Francois Fressin; Thomas N. Gautier; Ronald L. Gilliland; Michael R. Haas; Steve B. Howell; Jon M. Jenkins; Hans Kjeldsen; David G. Koch; David W. Latham; Jack J. Lissauer; Geoffrey W. Marcy; Jason F. Rowe; Dimitar D. Sasselov; Sara Seager; Jason H. Steffen; Guillermo Torres; Gibor Basri; Timothy M. Brown; David Charbonneau; Jessie L. Christiansen; Bruce D. Clarke; William D. Cochran

NASAs Kepler Mission uses transit photometry to determine the frequency of Earth-size planets in or near the habitable zone of Sun-like stars. The mission reached a milestone toward meeting that goal: the discovery of its first rocky planet, Kepler-10b. Two distinct sets of transit events were detected: (1) a 152 ± 4 ppm dimming lasting 1.811 ± 0.024 hr with ephemeris T [BJD] = 2454964.57375^(+0.00060)_(–0.00082) + N * 0.837495^(+0.000004)_(–0.000005) days and (2) a 376 ± 9 ppm dimming lasting 6.86 ± 0.07 hr with ephemeris T [BJD] = 2454971.6761^(+0.0020)_(–0.0023) + N * 45.29485^(+0.00065) _(–0.00076) days. Statistical tests on the photometric and pixel flux time series established the viability of the planet candidates triggering ground-based follow-up observations. Forty precision Doppler measurements were used to confirm that the short-period transit event is due to a planetary companion. The parent star is bright enough for asteroseismic analysis. Photometry was collected at 1 minute cadence for >4 months from which we detected 19 distinct pulsation frequencies. Modeling the frequencies resulted in precise knowledge of the fundamental stellar properties. Kepler-10 is a relatively old (11.9 ± 4.5 Gyr) but otherwise Sun-like main-sequence star with T_(eff) = 5627 ± 44 K, M_⋆ = 0.895 ± 0.060 M_⊙ , and R_⋆ = 1.056 ± 0.021 R_⊙. Physical models simultaneously fit to the transit light curves and the precision Doppler measurements yielded tight constraints on the properties of Kepler-10b that speak to its rocky composition: M_P = 4.56^9+1.17)_(–1.29) M_⊕, R_P = 1.416^(+0.033)_(–0.036) R_⊕, and ρ_P = 8.8^(+2.1)_(–2.9) g cm^(–3). Kepler-10b is the smallest transiting exoplanet discovered to date.


The Astrophysical Journal | 2010

OVERVIEW OF THE KEPLER SCIENCE PROCESSING PIPELINE

Jon M. Jenkins; Douglas A. Caldwell; Hema Chandrasekaran; Joseph D. Twicken; Stephen T. Bryson; Elisa V. Quintana; Bruce D. Clarke; Jie Li; Christopher Allen; Peter Tenenbaum; Hayley Wu; Todd C. Klaus; Christopher K. Middour; Miles T. Cote; Sean McCauliff; Forrest R. Girouard; Jay P. Gunter; Bill Wohler; Jeneen Sommers; Jennifer R. Hall; Akm Kamal Uddin; Michael S. Wu; Paresh Bhavsar; Jeffrey Edward van Cleve; David L. Pletcher; Jessie A. Dotson; Michael R. Haas; Ronald L. Gilliland; David G. Koch; William J. Borucki

The Kepler Mission Science Operations Center (SOC) performs several critical functions including managing the ~156,000 target stars, associated target tables, science data compression tables and parameters, as well as processing the raw photometric data downlinked from the spacecraft each month. The raw data are first calibrated at the pixel level to correct for bias, smear induced by a shutterless readout, and other detector and electronic effects. A background sky flux is estimated from ~4500 pixels on each of the 84 CCD readout channels, and simple aperture photometry is performed on an optimal aperture for each star. Ancillary engineering data and diagnostic information extracted from the science data are used to remove systematic errors in the flux time series that are correlated with these data prior to searching for signatures of transiting planets with a wavelet-based, adaptive matched filter. Stars with signatures exceeding 7.1? are subjected to a suite of statistical tests including an examination of each stars centroid motion to reject false positives caused by background eclipsing binaries. Physical parameters for each planetary candidate are fitted to the transit signature, and signatures of additional transiting planets are sought in the residual light curve. The pipeline is operational, finding planetary signatures and providing robust eliminations of false positives.


The Astrophysical Journal | 2011

Characteristics Of Kepler Planetary Candidates Based On The First Data Set

William J. Borucki; David G. Koch; Gibor Basri; Natalie M. Batalha; Alan P. Boss; Timothy M. Brown; Douglas A. Caldwell; Jørgen Christensen-Dalsgaard; William D. Cochran; Edna DeVore; Edward W. Dunham; Andrea K. Dupree; Thomas N. Gautier; John C. Geary; Ronald L. Gilliland; Alan Gould; Steve B. Howell; Jon M. Jenkins; Hans Kjeldsen; David W. Latham; Jack J. Lissauer; Geoffrey W. Marcy; David G. Monet; Dimitar D. Sasselov; Jill Tarter; David Charbonneau; Laurance R. Doyle; Eric B. Ford; Jonathan J. Fortney; Matthew J. Holman

In the spring of 2009, the Kepler Mission commenced high-precision photometry on nearly 156,000 stars to determine the frequency and characteristics of small exoplanets, conduct a guest observer program, and obtain asteroseismic data on a wide variety of stars. On 15 June 2010 the Kepler Mission released data from the first quarter of observations. At the time of this publication, 706 stars from this first data set have exoplanet candidates with sizes from as small as that of the Earth to larger than that of Jupiter. Here we give the identity and characteristics of 306 released stars with planetary candidates. Data for the remaining 400 stars with planetary candidates will be released in February 2011. Over half the candidates on the released list have radii less than half that of Jupiter. The released stars include five possible multi-planet systems. One of these has two Neptune-size (2.3 and 2.5 Earth-radius) candidates with near-resonant periods.


Journal of Geophysical Research | 1999

Initial results from radio occultation measurements with Mars Global Surveyor

David P. Hinson; Richard A. Simpson; Joseph D. Twicken; G. L. Tyler; F. M. Flasar

A series of radio occultation experiments conducted with Mars Global Surveyor in early 1998 has yielded 88 vertical profiles of the neutral atmosphere. The measurements cover latitudes of 29°N to 64°S and local times from 0600 through midnight to 1800 during early summer in the southern hemisphere (Ls = 264°–308°). Retrieved profiles of pressure and temperature versus radius and geopotential extend from the surface to the 10-Pa pressure level. Near-surface uncertainties in temperature and pressure are about 1 K and 2 Pa, respectively, far smaller than in previous radio occultation measurements at Mars. The profiles resolve the radiative-convective boundary layer adjacent to the surface and also reveal gravity waves, particularly at northern and equatorial latitudes, which appear to be breaking in some cases. Distinctive meridional gradients of pressure and temperature indicate the presence of a low-altitude westerly jet at latitudes of 15°–30°S at southern summer solstice. This jet appears in predictions of general circulation models in connection with the strong, seasonal, cross-equatorial Hadley circulation. The pressure gradient at ∼2 km altitude implies a wind speed of 33 m s−1, stronger than predicted, which may help explain the occurrence of numerous local dust storms within this latitude band in late southern spring. These measurements also characterize the response of the atmosphere to stationary thermal forcing at midsouthern latitudes, where high terrain south of Tharsis and low terrain in Hellas Planitia produce large, zonal temperature variations in the lowest scale height above the surface. Pressure measured at constant geopotential decreases at an average rate of 0.13% per degree Ls, due primarily to condensation of CO2 at the North Pole.


The Astrophysical Journal | 2010

Initial Characteristics of Kepler Long Cadence Data for Detecting Transiting Planets

Jon M. Jenkins; Douglas A. Caldwell; Hema Chandrasekaran; Joseph D. Twicken; Stephen T. Bryson; Elisa V. Quintana; Bruce D. Clarke; Jie Li; Christopher Allen; Peter Tenenbaum; Hayley Wu; Todd C. Klaus; Jeffrey Edward van Cleve; Jessie A. Dotson; Michael R. Haas; Ronald L. Gilliland; David G. Koch; William J. Borucki

The Kepler Mission seeks to detect Earth-size planets transiting solar-like stars in its ~115?deg2 field of view over the course of its 3.5 year primary mission by monitoring the brightness of each of ~156,000 Long Cadence stellar targets with a time resolution of 29.4 minutes. We discuss the photometric precision achieved on timescales relevant to transit detection for data obtained in the 33.5 day long Quarter 1 (Q1) observations that ended 2009 June 15. The lower envelope of the photometric precision obtained at various timescales is consistent with expected random noise sources, indicating that Kepler has the capability to fulfill its mission. The Kepler light curves exhibit high precision over a large dynamic range, which will surely permit their use for a large variety of investigations in addition to finding and characterizing planets. We discuss the temporal characteristics of both the raw flux time series and the systematic error-corrected flux time series produced by the Kepler Science Pipeline, and give examples illustrating Keplers large dynamic range and the variety of light curves obtained from the Q1 observations.

Collaboration


Dive into the Joseph D. Twicken's collaboration.

Top Co-Authors

Avatar

Jon M. Jenkins

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William J. Borucki

Rochester Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason F. Rowe

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Li

Ames Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge