Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph E. O'Tousa is active.

Publication


Featured researches published by Joseph E. O'Tousa.


Development | 2005

Rab11 mediates post-Golgi trafficking of rhodopsin to the photosensitive apical membrane of Drosophila photoreceptors

Akiko K. Satoh; Joseph E. O'Tousa; Koichi Ozaki; Donald F. Ready

In developing Drosophila photoreceptors, rhodopsin is trafficked to the rhabdomere, a specialized domain within the apical membrane surface. Rab11, a small GTPase implicated in membrane traffic, immunolocalizes to the trans-Golgi network, cytoplasmic vesicles and tubules, and the base of rhabdomeres. One hour after release from the endoplasmic reticulum, rhodopsin colocalizes with Rab11 in vesicles at the base of the rhabdomere. When Rab11 activity is reduced by three different genetic procedures, rhabdomere morphogenesis is inhibited and rhodopsin-bearing vesicles proliferate within the cytosol. Rab11 activity is also essential for development of MVB endosomal compartments; this is probably a secondary consequence of impaired rhabdomere development. Furthermore, Rab11 is required for transport of TRP, another rhabdomeric protein, and for development of specialized membrane structures within Garland cells. These results establish a role for Rab11 in the post-Golgi transport of rhodopsin and of other proteins to the rhabdomeric membranes of photoreceptors, and in analogous transport processes in other cells.


Neuron | 1995

Retinal degeneration caused by dominant rhodopsin mutations in Drosophila

Phani Kurada; Joseph E. O'Tousa

Dominant mutations of the Drosophila ninaE-encoded rhodopsin are described that reduce the expression of wild-type rhodopsin and cause a slow, age-dependent form of retinal degeneration. A posttranslational event subsequent to the requirement for the ninaA-encoded cyclophilin is disrupted by the dominant mutations. Most of these dominant mutations are missense mutations that affect the physical properties of one of the seven transmembrane domains; another affects the cysteine involved in a disulfide linkage. The results indicate that misfolded or unstable mutant rhodopsin can interfere with maturation of wild-type rhodopsin, and that these cellular conditions may trigger retinal degeneration. In addition, these dominant rhodopsin mutations suppress the rapid degeneration seen in rdgC and norpA flies, indicating that high levels of rhodopsin are required.


Journal of Neurogenetics | 1989

Morphological Defects in orajk84 Photoreceptors Caused by Mutation in R1-6 Opsin Gene of Drosophila

Joseph E. O'Tousa; D. S. Leonard; William L. Pak

The Drosophila mutant, oraJK84, lacks rhabdomeres in the major (R1-6) class of photoreceptors because these rhabdomeres rapidly degenerate in young flies. Genetic analysis reveals that oraJK84 actually contains two mutations (a ninaE and an ort allele) that affect the visual process. The mutation in ort appears to have no effect on photoreceptor structure. The other mutation occurs within the ninaE gene, which encodes the species of rhodopsin found in the R1-6 class of photoreceptors. Our analysis shows that this mutation is responsible for R1-6 rhabdomere degeneration in oraJK84 mutants. We also examined a ninaE mutant, denoted ninaEo117, that produces no ninaE transcript. The morphological phenotype observed in ninaEo117 is similar to that seen in oraJK84 mutants. We conclude that rhodopsin plays a vital role in maintaining photoreceptor structure in Drosophila.


Neuron | 1990

Rhodopsin activation causes retinal degeneration in drosophila rdgC mutant

Fintan Steele; Joseph E. O'Tousa

Drosophila rdgC (retinal degeneration-C) mutants show normal retinal morphology and photoreceptor physiology at young ages. Dark-reared rdgC flies retain this wild-type phenotype, but light-reared mutants undergo retinal degeneration. rdgC photoreceptors with low levels of rhodopsin as a result of vitamin A deprivation or a mutant rhodopsin (ninaE) gene fail to show rdgC-induced degeneration even after prolonged light treatment, demonstrating that degeneration occurs as a result of light stimulation of rhodopsin. Analysis of norpA; rdgC flies shows that the norpA-encoded phospholipase C, the target enzyme of the G protein activated by rhodopsin, is not required for rdgC-induced degeneration. Thus the rdgC+ gene product is required to prevent retinal degeneration that results from a previously unrecognized consequence of rhodopsin stimulation.


Journal of Biological Chemistry | 1998

Rab6 regulation of rhodopsin transport in Drosophila.

Shetty Km; Kurada P; Joseph E. O'Tousa

Rab6 is a GTP binding protein that regulates vesicular trafficking within the Golgi and post-Golgi compartments. We overexpressed wild-type, a GTPase defective (Q71L), and a guanine nucleotide binding defective (N125I) Rab6 protein inDrosophila photoreceptors to assess the in vivorole of Rab6 in the trafficking of rhodopsin and other proteins. Expression of Drab6Q71L greatly reduced the steady state levels of two rhodopsins, Rh1 and Rh3, whereasDrab6wt and Drab6N125I showed weaker effects. Analysis of a strain carrying Rh1 rhodopsin under a heat shock promoter showed thatDrab6Q71L , but notDrab6wt or Drab6N125I , prevents the maturation of rhodopsin beyond an immature 40 kDa form.Drab6Q71L is a GTPase defective mutant, indicating that anterograde transport of rhodopsin requires Rab6 GTPase function. The three Drab6 strains had no effect on the expression of several other photoreceptor proteins. TheDrab6Q71L photoreceptors show marked histological defects at young ages and degenerate over a two week time span. These results establish that rhodopsin is transported via a Rab6 regulated pathway and that defects in trafficking pathways lead to retinal degeneration.


Visual Neuroscience | 1992

Requirement of N-linked glycosylation site in Drosophila rhodopsin.

Joseph E. O'Tousa

In vitro mutagenesis and germline transformation were used to create a Drosophila mutant, delta Asn20, lacking the N-linked glycosylation site near the amino terminus of the major rhodopsin (Asn20-Gly-Ser changed to Ile-Gly-Ser). Low opsin protein levels are detected in delta Asn20 photoreceptors. Electroretinogram responses of mutant flies show that the residual rhodopsin found in this mutant is capable of initiating phototransduction. The organization of rhabdomeres, the photoreceptor organelle containing nearly all of the rhodopsin, is aberrant in the delta Asn20 mutant and undergoes age-dependent deterioration. These results establish that an N-linked glycosylation site, and likely glycosylation itself, plays a critical role in the maturation of Drosophila rhodopsin.


The Journal of Neuroscience | 2004

Limited role of developmental programmed cell death pathways in Drosophila norpA retinal degeneration.

Cheng-Da Hsu; Michelle A. Whaley; Kristin Frazer; Douglas A. Miller; Kathleen A. Mitchell; Sheila M. Adams; Joseph E. O'Tousa

We examined the role of programmed cell death (PCD) pathways in retinal degeneration caused by a mutation in the norpA gene. norpA degeneration shows morphological hallmarks of programmed cell death, specifically cytoplasmic condensation and engulfment of the dying photoreceptor cells by neighboring retinal pigment cells. However, genetic mosaic analysis of adult photoreceptors lacking rpr, hid, and grim show that these PCD inducers are not required for norpA degeneration. We showed previously that ectopic expression of either rpr or hid triggers rapid PCD in adult photoreceptors, and this is completely suppressed by the coexpression of the baculoviral P35 caspase inhibitor. In contrast, expression of P35 does not suppress norpA retinal degeneration, although a small delay in the rate of degeneration is observed in low light-low temperature conditions. P35 does not alter the morphological characteristics of norpA cell death. Overexpression of the Drosophila inhibitor of apoptosis Diap1 or a dominant-negative form of the Dronc caspase, even when coexpressed with P35, does not dramatically alter the time course of norpA degeneration. These results establish that the pathways responsible for PCD in development do not play a major role in adult retinal degeneration caused by norpA.


Visual Neuroscience | 1998

Rhodopsin maturation antagonized by dominant rhodopsin mutants

Phani Kurada; Timothy D. Tonini; Michelle A. Serikaku; Jonathan P. Piccini; Joseph E. O'Tousa

ninaE(D1), a dominant allele of the major Drosophila rhodopsin gene, expresses a rhodopsin that is predominantly recovered in a 80-kD complex that likely represents rhodopsin dimers. By driving either ninaE(D1) or ninaE+ expression from a heat-shock promoter, we show that the 80-kD rhodopsin complex forms immediately after gene activation. In wild type, but not ninaE(D1), rhodopsin monomeric forms are detected at later times. The generation of monomeric forms of wild-type rhodopsin is suppressed in vitamin A-deprived flies or in flies heterozygous for the dominant rhodopsin mutation. We also show that ninaE(D1) expression does not affect the maturation of another Drosophila visual pigment, Rh3. These results are consistent with the view that the ninaE(D1) rhodopsin antagonizes an early posttranslation process that is specific for maturation of the ninaE-encoded rhodopsin.


The Journal of Comparative Neurology | 2009

Patterned rhodopsin expression in R7 photoreceptors of mosquito retina: Implications for species-specific behavior.

Xiaobang Hu; James H. England; Aaron C. Lani; Jennifer J. Tung; Nicholas J. Ward; Sheila M. Adams; Kathleen A. Barber; Michelle A. Whaley; Joseph E. O'Tousa

Visual perception of the environment plays an important role in many mosquito behaviors. Characterization of the cellular and molecular components of mosquito vision will provide a basis for understanding these behaviors. A unique feature of the R7 photoreceptors in Aedes aegypti and Anopheles gambiae is the extreme apical projection of their rhabdomeric membrane. We show here that the compound eye of both mosquitoes is divided into specific regions based on nonoverlapping expression of specific rhodopsins in these R7 cells. The R7 cells of the upper dorsal region of both mosquitoes express a long wavelength op2 rhodopsin family member. The lower dorsal hemisphere and upper ventral hemisphere of both mosquitoes express the UV‐sensitive op8 rhodopsin. At the lower boundary of this second region, the R7 cells again express the op2 family rhodopsin. In Ae. aegypti, this third region is a horizontal stripe of one to three rows of ommatidia, and op8 is expressed in a fourth region in the lower ventral hemisphere. However, in An. gambiae the op2 family member expression is expanded throughout the lower region in the ventral hemisphere. The overall conserved ommatidial organization and R7 retinal patterning show these two species retain similar visual capabilities. However, the differences within the ventral domain may facilitate species‐specific visual behaviors. J. Comp. Neurol. 516:334–342, 2009.


The Journal of Experimental Biology | 2014

Rhodopsin coexpression in UV photoreceptors of Aedes aegypti and Anopheles gambiae mosquitoes

Xiaobang Hu; Matthew T. Leming; Michelle A. Whaley; Joseph E. O'Tousa

Differential rhodopsin gene expression within specialized R7 photoreceptor cells divides the retinas of Aedes aegypti and Anopheles gambiae mosquitoes into distinct domains. The two species express the rhodopsin orthologs Aaop8 and Agop8, respectively, in a large subset of these R7 photoreceptors that function as ultraviolet receptors. We show here that a divergent subfamily of mosquito rhodopsins, Aaop10 and Agop10, is coexpressed in these R7 photoreceptors. The properties of the A. aegypti Aaop8 and Aaop10 rhodopsins were analyzed by creating transgenic Drosophila expressing these rhodopsins. Electroretinogram recordings, and spectral analysis of head extracts, obtained from the Aaop8 strain confirmed that Aaop8 is an ultraviolet-sensitive rhodopsin. Aaop10 was poorly expressed and capable of eliciting only small and slow light responses in Drosophila photoreceptors, and electroretinogram analysis suggested that it is a long-wavelength rhodopsin with a maximal sensitivity near 500 nm. Thus, coexpression of Aaop10 rhodopsin with Aaop8 rhodopsin has the potential to modify the spectral properties of mosquito ultraviolet receptors. Retention of Op10 rhodopsin family members in the genomes of Drosophila species suggests that this rhodopsin family may play a conserved role in insect vision.

Collaboration


Dive into the Joseph E. O'Tousa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaobang Hu

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bill Boggess

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

Cheng-Da Hsu

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

David R. Hyde

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

Jing Yang

University of Notre Dame

View shared research outputs
Researchain Logo
Decentralizing Knowledge