Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheila M. Adams is active.

Publication


Featured researches published by Sheila M. Adams.


Matrix Biology | 2013

Decorin expression is important for age-related changes in tendon structure and mechanical properties.

Andrew A. Dunkman; Mark R. Buckley; Michael J. Mienaltowski; Sheila M. Adams; Stephen J. Thomas; Lauren Satchell; Akash Kumar; Lydia Pathmanathan; David P. Beason; Renato V. Iozzo; David E. Birk; Louis J. Soslowsky

The aging population is at an increased risk of tendon injury and tendinopathy. Elucidating the molecular basis of tendon aging is crucial to understanding the age-related changes in structure and function in this vulnerable tissue. In this study, the structural and functional features of tendon aging are investigated. In addition, the roles of decorin and biglycan in the aging process were analyzed using transgenic mice at both mature and aged time points. Our hypothesis is that the increase in tendon injuries in the aging population is the result of altered structural properties that reduce the biomechanical function of the tendon and consequently increase susceptibility to injury. Decorin and biglycan are important regulators of tendon structure and therefore, we further hypothesized that decreased function in aged tendons is partly the result of altered decorin and biglycan expression. Biomechanical analyses of mature (day 150) and aged (day 570) patellar tendons revealed deteriorating viscoelastic properties with age. Histology and polarized light microscopy demonstrated decreased cellularity, alterations in tenocyte shape, and reduced collagen fiber alignment in the aged tendons. Ultrastructural analysis of fibril diameter distributions indicated an altered distribution in aged tendons with an increase of large diameter fibrils. Aged wild type tendons maintained expression of decorin which was associated with the structural and functional changes seen in aged tendons. Aged patellar tendons exhibited altered and generally inferior properties across multiple assays. However, decorin-null tendons exhibited significantly decreased effects of aging compared to the other genotypes. The amelioration of the functional deficits seen in the absence of decorin in aged tendons was associated with altered tendon fibril structure. Fibril diameter distributions in the decorin-null aged tendons were comparable to those observed in the mature wild type tendon with the absence of the subpopulation containing large diameter fibrils. Collectively, our findings provide evidence for age-dependent alterations in tendon architecture and functional activity, and further show that lack of stromal decorin attenuates these changes.


Journal of Cell Science | 2011

Collagen V is a dominant regulator of collagen fibrillogenesis: dysfunctional regulation of structure and function in a corneal-stroma-specific Col5a1-null mouse model

Mei Sun; Shoujun Chen; Sheila M. Adams; Jane B. Florer; Hongshan Liu; Winston W.-Y. Kao; Richard J. Wenstrup; David E. Birk

Collagen V is a regulatory fibril-forming collagen that forms heterotypic fibrils with collagen I. Deletion of collagen V in the mouse is associated with a lack of fibril assembly in the embryonic mesenchyme, with a resultant lethal phenotype. The current work elucidates the regulatory roles of collagen V during development and growth of tissues. A conditional mouse model with a mutation in Col5a1 was developed using a Cre-loxP approach. Col5a1 was ablated in Col5a1flox/flox mice using a cornea stroma-specific Kera-Cre driver mouse to produce a bitransgenic Col5a1Δst/Δst line that is null for collagen V. This permits analyses of the corneal stroma, a widely used model for studies of collagen V. The collagen-V-knockout stroma demonstrated severe dysfunctional regulation of fibrillogenesis. Fibril diameters were significantly increased, with an abnormal, heterogeneous distribution; fibril structure was abnormal, fibril number was decreased and lamellae were disorganized with decreased stroma thickness. The phenotype was more severe in the anterior versus posterior stroma. Opacity was demonstrated throughout the Col5a1Δst/Δst stroma, with significantly increased haze intensity compared with control mice. These data indicate central regulatory roles for collagen V in fibril and matrix assembly during tissue development, with dysfunctional regulation resulting in a functional loss of transparency.


Science Translational Medicine | 2014

Human limbal biopsy-derived stromal stem cells prevent corneal scarring.

Sayan Basu; Andrew Hertsenberg; Martha L. Funderburgh; Michael K. Burrow; Mary M. Mann; Yiqin Du; Kira L. Lathrop; Fatima N. Syed-Picard; Sheila M. Adams; David E. Birk; James L. Funderburgh

Human stromal stem cells isolated from limbal biopsies prevented corneal scarring in a murine model of corneal wounding. All Eyes on Limbal Stem Cells Our corneas—transparent, collagen-based structures that allow us to see—are easily damaged by trauma and infection, resulting in scarring and, in many cases, blindness. Although corneal transplant is the clinical norm, adverse immune responses and a shortage of cornea donors are serious limitations. Basu and colleagues devised a personalized cell-based, nonsurgical approach to prevent corneal scarring. They obtained mesenchymal stem cells from the human limbus (the region between the cornea and the sclera) and confirmed that they could be differentiated into keratocytes (corneal cells) in vitro. The human limbal biopsy–derived stromal cells, or LBSCs, were then placed in a fibrin gel and applied to the surface of debridement wounds in mice. The LBSCs were able to regenerate damaged stromal tissue in the animals, resembling native corneal tissue. Because these cells can be obtained directly from the patient and because fibrin-based products are already used in people, this approach could translate soon to treat stromal scarring, a major cause of corneal blindness. Conventional allograft therapy for corneal scarring is widespread and successful, but donor tissue is not universally available, and some grafts fail owing to rejection and complications such as endothelial failure. We investigated direct treatment of corneal scarring using autologous stem cells, a therapy that, if successful, could reduce the need for corneal grafts. Mesenchymal cells were expanded from small superficial, clinically replicable limbal biopsies of human cadaveric corneo-scleral rims. Limbal biopsy–derived stromal cells (LBSCs) expanded rapidly in media containing human serum, were highly clonogenic, and could generate spheres expressing stem cell genes (ABCG2, Nestin, NGFR, Oct4, PAX6, and Sox2). Human LBSCs differentiated into keratocytes expressing characteristic marker genes (ALDH3A1, AQP1, KERA, and PTGDS) and organized a thick lamellar stroma-like tissue containing aligned collagen and keratan sulfate proteoglycans when cultured on aligned nanofiber substrata. When engrafted into mouse corneal wounds, LBSCs prevented formation of light-scattering scar tissue containing fibrotic matrix components. The presence of LBSCs induced regeneration of ablated stroma with tissue exhibiting lamellar structure and collagen organization indistinguishable from that of native tissue. Because the limbus can be easily biopsied from either eye of an affected individual and LBSCs capable of corneal stromal remodeling can be expanded under xeno-free autologous conditions, these cells present a potential for autologous stem cell–based treatment of corneal stromal blindness.


Matrix Biology | 2014

The Injury Response of Aged Tendons in the Absence of Biglycan and Decorin

Andrew A. Dunkman; Mark R. Buckley; Michael J. Mienaltowski; Sheila M. Adams; Stephen J. Thomas; Akash Kumar; David P. Beason; Renato V. Iozzo; David E. Birk; Louis J. Soslowsky

Recent studies have demonstrated that the small leucine-rich proteoglycans (SLRPs) biglycan and decorin impact tendon development, aging and healing in mature mice. However, despite the increased risk of tendon injury in the elderly, the role of SLRPs in tendon repair has not been investigated in aged animals. Therefore, our objective was to elucidate the influences of bigylcan and decorin on tendon healing in aged mice to relate our findings to previous work in mature mice. Since the processes of aging and healing are known to interact, our hypothesis was that aging mediates the role of biglycan and decorin on tendon healing. Patellar tendons from wild-type, biglycan-null and decorin-null mice were injured at 270 days using an established model. At 3 and 6 weeks post-surgery, structural, mechanical and biochemical analyses were performed and compared to uninjured controls. Early stage healing was inferior in biglycan-null and decorin-null mice as compared to wild type. However, tendons of all genotypes failed to exhibit improved mechanical properties between 3 and 6 weeks post-injury. In contrast, in a previous investigation of tendon healing in mature (i.e., 120 day-old) mice, only biglycan-null mice were deficient in early stage healing while decorin-null mice were deficient in late-stage healing. These results confirm that the impact of SLRPs on tendon healing is mediated by age and could inform future age-specific therapies for enhancing tendon healing.


Journal of Biological Chemistry | 2015

Fibulin-4 E57K Knock-in Mice Recapitulate Cutaneous, Vascular and Skeletal Defects of Recessive Cutis Laxa 1B with both Elastic Fiber and Collagen Fibril Abnormalities

Olga Igoucheva; Vitali Alexeev; Carmen M. Halabi; Sheila M. Adams; Ivan Stoilov; Takako Sasaki; Machiko Arita; Adele Donahue; Robert P. Mecham; David E. Birk

Background: Mutations in fibulin-4 cause autosomal recessive cutis laxa 1B, characterized by loose skin with vascular, lung, and skeletal abnormalities. Results: A mouse strain carrying a recurrent fibulin-4 missense mutation was generated and characterized. Conclusion: Mutant mice recapitulate the complete clinical features of the disease. Significance: The study provides the first evidence that fibulin-4 regulates collagen fibrillogenesis. Fibulin-4 is an extracellular matrix protein essential for elastic fiber formation. Frameshift and missense mutations in the fibulin-4 gene (EFEMP2/FBLN4) cause autosomal recessive cutis laxa (ARCL) 1B, characterized by loose skin, aortic aneurysm, arterial tortuosity, lung emphysema, and skeletal abnormalities. Homozygous missense mutations in FBLN4 are a prevalent cause of ARCL 1B. Here we generated a knock-in mouse strain bearing a recurrent fibulin-4 E57K homozygous missense mutation. The mutant mice survived into adulthood and displayed abnormalities in multiple organ systems, including loose skin, bent forelimb, aortic aneurysm, tortuous artery, and pulmonary emphysema. Biochemical studies of dermal fibroblasts showed that fibulin-4 E57K mutant protein was produced but was prone to dimer formation and inefficiently secreted, thereby triggering an endoplasmic reticulum stress response. Immunohistochemistry detected a low level of fibulin-4 E57K protein in the knock-in skin along with altered expression of selected elastic fiber components. Processing of a precursor to mature lysyl oxidase, an enzyme involved in cross-linking of elastin and collagen, was compromised. The knock-in skin had a reduced level of desmosine, an elastin-specific cross-link compound, and ultrastructurally abnormal elastic fibers. Surprisingly, structurally aberrant collagen fibrils and altered organization into fibers were characteristics of the knock-in dermis and forelimb tendons. Type I collagen extracted from the knock-in skin had decreased amounts of covalent intermolecular cross-links, which could contribute to the collagen fibril abnormalities. Our studies provide the first evidence that fibulin-4 plays a role in regulating collagen fibril assembly and offer a preclinical platform for developing treatments for ARCL 1B.


Journal of Biological Chemistry | 2014

A Mouse Model for Dominant Collagen VI Disorders: HETEROZYGOUS DELETION OF Col6a3 EXON 16*

Te Cheng Pan; Rui Zhu Zhang; Machiko Arita; Sasha Bogdanovich; Sheila M. Adams; Sudheer Kumar Gara; Raimund Wagener; Tejvior S. Khurana; David E. Birk

Background: Dominant collagen VI gene mutations cause the severe Ullrich congenital muscular dystrophy (UCMD) and mild Bethlem myopathy. Results: A mutant mouse mimicking the most common molecular defect in dominant UCMD patients was generated and characterized. Conclusion: The mutant mouse displays muscle and connective tissue abnormalities. Significance: The mutant mouse provides an animal model for dominant collagen VI disorders. Dominant and recessive mutations in collagen VI genes, COL6A1, COL6A2, and COL6A3, cause a continuous spectrum of disorders characterized by muscle weakness and connective tissue abnormalities ranging from the severe Ullrich congenital muscular dystrophy to the mild Bethlem myopathy. Herein, we report the development of a mouse model for dominant collagen VI disorders by deleting exon 16 in the Col6a3 gene. The resulting heterozygous mouse, Col6a3+/d16, produced comparable amounts of normal Col6a3 mRNA and a mutant transcript with an in-frame deletion of 54 bp of triple-helical coding sequences, thus mimicking the most common molecular defect found in dominant Ullrich congenital muscular dystrophy patients. Biosynthetic studies of mutant fibroblasts indicated that the mutant α3(VI) collagen protein was produced and exerted a dominant-negative effect on collagen VI microfibrillar assembly. The distribution of the α3(VI)-like chains of collagen VI was not altered in mutant mice during development. The Col6a3+/d16 mice developed histopathologic signs of myopathy and showed ultrastructural alterations of mitochondria and sarcoplasmic reticulum in muscle and abnormal collagen fibrils in tendons. The Col6a3+/d16 mice displayed compromised muscle contractile functions and thereby provide an essential preclinical platform for developing treatment strategies for dominant collagen VI disorders.


Journal of Biomechanics | 2012

Mechanical property changes during neonatal development and healing using a multiple regression model

Heather L. Ansorge; Sheila M. Adams; Abbas F. Jawad; David E. Birk; Louis J. Soslowsky

During neonatal development, tendons undergo a well orchestrated process whereby extensive structural and compositional changes occur in synchrony to produce a normal tissue. Conversely, during the repair response to injury, structural and compositional changes occur, but a mechanically inferior tendon is produced. As a result, developmental processes have been postulated as a potential paradigm for elucidation of mechanistic insight required to develop treatment modalities to improve adult tissue healing. The objective of this study was to compare and contrast normal development with injury during early and late developmental healing. Using backwards multiple linear regressions, quantitative and objective information was obtained into the structure-function relationships in tendon. Specifically, proteoglycans were shown to be significant predictors of modulus during early developmental healing but not during late developmental healing or normal development. Multiple independent parameters predicted percent relaxation during normal development, however, only biglycan and fibril diameter parameters predicted percent relaxation during early developmental healing. Lastly, multiple differential predictors were observed between early development and early developmental healing; however, no differential predictors were observed between late development and late developmental healing. This study presents a model through which objective analysis of how compositional and structural parameters that affect the development of mechanical parameters can be quantitatively measured. In addition, information from this study can be used to develop new treatment and therapies through which improved adult tendon healing can be obtained.


Scientific Reports | 2017

Cornea organoids from human induced pluripotent stem cells

James W. Foster; Karl J. Wahlin; Sheila M. Adams; David E. Birk; Donald J. Zack; Shukti Chakravarti

The cornea is the transparent outermost surface of the eye, consisting of a stratified epithelium, a collagenous stroma and an innermost single-cell layered endothelium and providing 2/3 of the refractive power of the eye. Multiple diseases of the cornea arise from genetic defects where the ultimate phenotype can be influenced by cross talk between the cell types and the extracellular matrix. Cell culture modeling of diseases can benefit from cornea organoids that include multiple corneal cell types and extracellular matrices. Here we present human iPS cell-derived organoids through sequential rounds of differentiation programs. These organoids share features of the developing cornea, harboring three distinct cell types with expression of key epithelial, stromal and endothelial cell markers. Cornea organoid cultures provide a powerful 3D model system for investigating corneal developmental processes and their disruptions in diseased conditions.


American Journal of Pathology | 2015

Targeted Deletion of Collagen V in Tendons and Ligaments Results in a Classic Ehlers-Danlos Syndrome Joint Phenotype

Mei Sun; Brianne K. Connizzo; Sheila M. Adams; Benjamin R. Freedman; Richard J. Wenstrup; Louis J. Soslowsky; David E. Birk

Collagen V mutations underlie classic Ehlers-Danlos syndrome, and joint hypermobility is an important clinical manifestation. We define the function of collagen V in tendons and ligaments, as well as the role of alterations in collagen V expression in the pathobiology in classic Ehlers-Danlos syndrome. A conditional Col5a1(flox/flox) mouse model was bred with Scleraxis-Cre mice to create a targeted tendon and ligament Col5a1-null mouse model, Col5a1(Δten/Δten). Targeting was specific, resulting in collagen V-null tendons and ligaments. Col5a1(Δten/Δten) mice demonstrated decreased body size, grip weakness, abnormal gait, joint laxity, and early-onset osteoarthritis. These gross changes were associated with abnormal fiber organization, as well as altered collagen fibril structure with increased fibril diameters and decreased fibril number that was more severe in a major joint stabilizing ligament, the anterior cruciate ligament (ACL), than in the flexor digitorum longus tendon. The ACL also had a higher collagen V content than did the flexor digitorum longus tendon. The collagen V-null ACL and flexor digitorum longus tendon both had significant alterations in mechanical properties, with ACL exhibiting more severe changes. The data demonstrate critical differential regulatory roles for collagen V in tendon and ligament structure and function and suggest that collagen V regulatory dysfunction is associated with an abnormal joint phenotype, similar to the hypermobility phenotype in classic Ehlers-Danlos syndrome.


Matrix Biology | 2010

Enhanced cell accumulation and collagen processing by keratocytes cultured under agarose and in media containing IGF-I, TGF-β or PDGF.

LaTia Etheredge; Bradley Kane; Nikola Valkov; Sheila M. Adams; David E. Birk; John R. Hassell

We previously showed an agarose overlay on keratocytes cultured in media containing pharmacological levels of insulin enhanced collagen processing and collagen fibril formation. In this study, we compared collagen processing by keratocytes cultured in media containing physiological levels of IGF-I, TGF-β, FGF-2, and PDGF in standard and in agarose overlay cultures. Pepsin digestion/SDS PAGE was used to determine the levels of procollagen secreted into the media and the collagen content of the ECM associated with the cell layer. Distribution of collagen type I and fibronectin in the ECM of the agarose cultures was determined by immunoflorescence. Collagen fibril and keratocyte morphology was evaluated by electron microscopy. The agarose overlay significantly enhanced the cell number in the IGF-I, TGF-β and PDGF treated cultures by 2-3 fold. The overlay also significantly enhanced the processing of procollagen to collagen fibrils from 29% in standard cultures to 63-68% in agarose cultures for the IGF-I and PDGF cultures, and from 66% in standard culture to 85% in agarose culture for the TGF-β cultures. Cell accumulation and collagen processing was not enhanced by agarose overlay of the FGF-2 treated cultures. Collagen type I and fibronectin were more uniformly distributed and the collagen fibrils smaller in the ECM of the TGF-β treated cultures. Keratocytes in the FGF-2 treated cultures were in close cell contact with few collagen fibrils while IGF-I, TGF-β, and PDGF cultures had an extensive ECM with abundant collagen fibrils. The results of this study indicate that the agarose overlay enhances collagen fibril assembly and cell accumulation by keratocytes when both collagen synthesis and cell proliferation are stimulated.

Collaboration


Dive into the Sheila M. Adams's collaboration.

Top Co-Authors

Avatar

David E. Birk

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew A. Dunkman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David P. Beason

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mei Sun

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Renato V. Iozzo

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Akash Kumar

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge