Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph Frostad is active.

Publication


Featured researches published by Joseph Frostad.


The Lancet | 2017

Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015.

Aaron Cohen; Michael Brauer; Richard T. Burnett; H. Ross Anderson; Joseph Frostad; Kara Estep; Kalpana Balakrishnan; Bert Brunekreef; Lalit Dandona; Rakhi Dandona; Valery L. Feigin; Greg Freedman; Bryan Hubbell; Haidong Kan; Luke D. Knibbs; Yang Liu; Randall V. Martin; Lidia Morawska; C. Arden Pope; Hwashin Shin; Kurt Straif; Gavin Shaddick; Matthew L. Thomas; Rita Van Dingenen; Aaron van Donkelaar; Theo Vos; Christopher J. L. Murray; Mohammad H. Forouzanfar

Summary Background Exposure to ambient air pollution increases morbidity and mortality, and is a leading contributor to global disease burden. We explored spatial and temporal trends in mortality and burden of disease attributable to ambient air pollution from 1990 to 2015 at global, regional, and country levels. Methods We estimated global population-weighted mean concentrations of particle mass with aerodynamic diameter less than 2·5 μm (PM2·5) and ozone at an approximate 11 km × 11 km resolution with satellite-based estimates, chemical transport models, and ground-level measurements. Using integrated exposure–response functions for each cause of death, we estimated the relative risk of mortality from ischaemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, lung cancer, and lower respiratory infections from epidemiological studies using non-linear exposure–response functions spanning the global range of exposure. Findings Ambient PM2·5 was the fifth-ranking mortality risk factor in 2015. Exposure to PM2·5 caused 4·2 million (95% uncertainty interval [UI] 3·7 million to 4·8 million) deaths and 103·1 million (90·8 million 115·1 million) disability-adjusted life-years (DALYs) in 2015, representing 7·6% of total global deaths and 4·2% of global DALYs, 59% of these in east and south Asia. Deaths attributable to ambient PM2·5 increased from 3·5 million (95% UI 3·0 million to 4·0 million) in 1990 to 4·2 million (3·7 million to 4·8 million) in 2015. Exposure to ozone caused an additional 254 000 (95% UI 97 000–422 000) deaths and a loss of 4·1 million (1·6 million to 6·8 million) DALYs from chronic obstructive pulmonary disease in 2015. Interpretation Ambient air pollution contributed substantially to the global burden of disease in 2015, which increased over the past 25 years, due to population ageing, changes in non-communicable disease rates, and increasing air pollution in low-income and middle-income countries. Modest reductions in burden will occur in the most polluted countries unless PM2·5 values are decreased substantially, but there is potential for substantial health benefits from exposure reduction. Funding Bill & Melinda Gates Foundation and Health Effects Institute.


Environmental Science & Technology | 2016

Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013.

Michael Brauer; Greg Freedman; Joseph Frostad; Aaron van Donkelaar; Randall V. Martin; Frank Dentener; Rita Van Dingenen; Kara Estep; Heresh Amini; Joshua S. Apte; Kalpana Balakrishnan; Lars Barregard; David M. Broday; Valery L. Feigin; Santu Ghosh; Philip K. Hopke; Luke D. Knibbs; Yoshihiro Kokubo; Yang Liu; Stefan Ma; Lidia Morawska; José Luis Texcalac Sangrador; Gavin Shaddick; H. Ross Anderson; Theo Vos; Mohammad H. Forouzanfar; Richard T. Burnett; Aaron Cohen

Exposure to ambient air pollution is a major risk factor for global disease. Assessment of the impacts of air pollution on population health and evaluation of trends relative to other major risk factors requires regularly updated, accurate, spatially resolved exposure estimates. We combined satellite-based estimates, chemical transport model simulations, and ground measurements from 79 different countries to produce global estimates of annual average fine particle (PM2.5) and ozone concentrations at 0.1° × 0.1° spatial resolution for five-year intervals from 1990 to 2010 and the year 2013. These estimates were applied to assess population-weighted mean concentrations for 1990-2013 for each of 188 countries. In 2013, 87% of the worlds population lived in areas exceeding the World Health Organization Air Quality Guideline of 10 μg/m(3) PM2.5 (annual average). Between 1990 and 2013, global population-weighted PM2.5 increased by 20.4% driven by trends in South Asia, Southeast Asia, and China. Decreases in population-weighted mean concentrations of PM2.5 were evident in most high income countries. Population-weighted mean concentrations of ozone increased globally by 8.9% from 1990-2013 with increases in most countries-except for modest decreases in North America, parts of Europe, and several countries in Southeast Asia.


Environmental Science & Technology | 2016

The Regional Impacts of Cooking and Heating Emissions on Ambient Air Quality and Disease Burden in China

Scott Archer-Nicholls; Ellison Carter; Rajesh Kumar; Qingyang Xiao; Yang Liu; Joseph Frostad; Mohammad H. Forouzanfar; Aaron Cohen; Michael Brauer; Jill Baumgartner; Christine Wiedinmyer

Exposure to air pollution is a major risk factor globally and particularly in Asia. A large portion of air pollutants result from residential combustion of solid biomass and coal fuel for cooking and heating. This study presents a regional modeling sensitivity analysis to estimate the impact of residential emissions from cooking and heating activities on the burden of disease at a provincial level in China. Model surface PM2.5 fields are shown to compare well when evaluated against surface air quality measurements. Scenarios run without residential sector and residential heating emissions are used in conjunction with the Global Burden of Disease 2013 framework to calculate the proportion of deaths and disability adjusted life years attributable to PM2.5 exposure from residential emissions. Overall, we estimate that 341 000 (306 000-370 000; 95% confidence interval) premature deaths in China are attributable to residential combustion emissions, approximately a third of the deaths attributable to all ambient PM2.5 pollution, with 159 000 (142 000-172 000) and 182 000 (163 000-197 000) premature deaths from heating and cooking emissions, respectively. Our findings emphasize the need to mitigate emissions from both residential heating and cooking sources to reduce the health impacts of ambient air pollution in China.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter

Richard T. Burnett; Hong Chen; Mieczyslaw Szyszkowicz; Neal Fann; Bryan Hubbell; C. Arden Pope; Joshua S. Apte; Michael Brauer; Aaron Cohen; Scott Weichenthal; Jay S. Coggins; Qian Di; Bert Brunekreef; Joseph Frostad; Stephen S Lim; Haidong Kan; Katherine Walker; George D. Thurston; Richard B. Hayes; Chris C. Lim; Michelle C. Turner; Michael Jerrett; Daniel Krewski; Susan M. Gapstur; W. Ryan Diver; Bart Ostro; Debbie Goldberg; Daniel L. Crouse; Randall V. Martin; Paul A. Peters

Significance Exposure to outdoor concentrations of fine particulate matter is considered a leading global health concern, largely based on estimates of excess deaths using information integrating exposure and risk from several particle sources (outdoor and indoor air pollution and passive/active smoking). Such integration requires strong assumptions about equal toxicity per total inhaled dose. We relax these assumptions to build risk models examining exposure and risk information restricted to cohort studies of outdoor air pollution, now covering much of the global concentration range. Our estimates are severalfold larger than previous calculations, suggesting that outdoor particulate air pollution is an even more important population health risk factor than previously thought. Exposure to ambient fine particulate matter (PM2.5) is a major global health concern. Quantitative estimates of attributable mortality are based on disease-specific hazard ratio models that incorporate risk information from multiple PM2.5 sources (outdoor and indoor air pollution from use of solid fuels and secondhand and active smoking), requiring assumptions about equivalent exposure and toxicity. We relax these contentious assumptions by constructing a PM2.5-mortality hazard ratio function based only on cohort studies of outdoor air pollution that covers the global exposure range. We modeled the shape of the association between PM2.5 and nonaccidental mortality using data from 41 cohorts from 16 countries—the Global Exposure Mortality Model (GEMM). We then constructed GEMMs for five specific causes of death examined by the global burden of disease (GBD). The GEMM predicts 8.9 million [95% confidence interval (CI): 7.5–10.3] deaths in 2015, a figure 30% larger than that predicted by the sum of deaths among the five specific causes (6.9; 95% CI: 4.9–8.5) and 120% larger than the risk function used in the GBD (4.0; 95% CI: 3.3–4.8). Differences between the GEMM and GBD risk functions are larger for a 20% reduction in concentrations, with the GEMM predicting 220% higher excess deaths. These results suggest that PM2.5 exposure may be related to additional causes of death than the five considered by the GBD and that incorporation of risk information from other, nonoutdoor, particle sources leads to underestimation of disease burden, especially at higher concentrations.


Environmental Science & Technology | 2018

Data Integration for the Assessment of Population Exposure to Ambient Air Pollution for Global Burden of Disease Assessment

Gavin Shaddick; Matthew L. Thomas; Heresh Amini; David M. Broday; Aaron Cohen; Joseph Frostad; Amelia Green; Sophie Gumy; Yang Liu; Randall V. Martin; Annette Prüss-Üstün; Daniel Simpson; Aaron van Donkelaar; Michael Brauer

Air pollution is a leading global disease risk factor. Tracking progress (e.g., for Sustainable Development Goals) requires accurate, spatially resolved, routinely updated exposure estimates. A Bayesian hierarchical model was developed to estimate annual average fine particle (PM2.5) concentrations at 0.1° × 0.1° spatial resolution globally for 2010-2016. The model incorporated spatially varying relationships between 6003 ground measurements from 117 countries, satellite-based estimates, and other predictors. Model coefficients indicated larger contributions from satellite-based estimates in countries with low monitor density. Within and out-of-sample cross-validation indicated improved predictions of ground measurements compared to previous (Global Burden of Disease 2013) estimates (increased within-sample R2 from 0.64 to 0.91, reduced out-of-sample, global population-weighted root mean squared error from 23 μg/m3 to 12 μg/m3). In 2016, 95% of the worlds population lived in areas where ambient PM2.5 levels exceeded the World Health Organization 10 μg/m3 (annual average) guideline; 58% resided in areas above the 35 μg/m3 Interim Target-1. Global population-weighted PM2.5 concentrations were 18% higher in 2016 (51.1 μg/m3) than in 2010 (43.2 μg/m3), reflecting in particular increases in populous South Asian countries and from Saharan dust transported to West Africa. Concentrations in China were high (2016 population-weighted mean: 56.4 μg/m3) but stable during this period.


Journal of Environmental Management | 2018

Impact of air pollution control policies on future PM2.5 concentrations and their source contributions in China

Siyi Cai; Qiao Ma; Shuxiao Wang; Bin Zhao; Michael Brauer; Aaron J. Cohen; Randall V. Martin; Qianqian Zhang; Qinbin Li; Yuxuan Wang; Jiming Hao; Joseph Frostad; Mohammad H. Forouzanfar; Richard T. Burnett

To investigate the impact of air pollutant control policies on future PM2.5 concentrations and their source contributions in China, we developed four future scenarios for 2030 based on a 2013 emission inventory, and conducted air quality simulations for each scenario using the chemical transport model GEOS-Chem (version 9.1.3). Two energy scenarios i.e., current legislation (CLE) and with additional measures (WAM), were developed to project future energy consumption, reflecting, respectively, existing legislation and implementation status as of the end of 2012, and new energy-saving policies that would be released and enforced more stringently. Two end-of-pipe control strategies, i.e., current control technologies (until 2017) and more stringent control technologies (until 2030), were also developed. The combinations of energy scenarios and end-of-pipe control strategies constitute four emission scenarios (2017-CLE, 2030-CLE, 2017-WAM, and 2030-WAM) evaluated in simulations. PM2.5 concentrations at national level were estimated to be 57 μg/m3 in the base year 2013, and 58 μg/m3, 42 μg/m3, 42 μg/m3, and 30 μg/m3 under the 2017-CLE, 2030-CLE, 2017-WAM, and 2030-WAM scenarios in 2030, respectively. Large PM2.5 reductions between 2013 and 2030 were estimated for heavily polluted regions (Sichuan Basin, Middle Yangtze River, North China). The energy-saving policies show similar effects to the end-of-pipe emission control measures, but the relative importance of these two groups of policies varies in different regions. Absolute contributions to PM2.5 concentrations from most major sources declined from 2017-CLE to 2030-WAM. With respect to fractional contributions, most coal-burning sectors (including power plant, industrial and residential coal burning) increased from 2017-CLE to 2030-WAM, due to larger reductions from non-coal sources, including transportation and biomass open burning. Residential combustion and open burning had much lower fractional contribution to ambient PM2.5 concentrations in the 2017-WAM/2030-WAM compared to the 2017-CLE/2030-CLE scenarios. Fractional contributions from transportation were reduced dramatically in 2030-CLE and 2030-WAM compared to 2017-CLE/2017-WAM, due to the enforcement of stringent end-of-pipe emission controls. Across all scenarios, coal combustion remained the single largest contributor to PM2.5 concentrations in 2030. Reducing PM2.5 emissions from coal combustion remains a strategic priority for air quality management in China.


Environment International | 2018

Global estimation of exposure to fine particulate matter (PM2.5) from household air pollution

Matthew Shupler; William W Godwin; Joseph Frostad; Paul Gustafson; Raphael E. Arku; Michael Brauer

BACKGROUND Exposure to household air pollution (HAP) from cooking with dirty fuels is a leading health risk factor within Asia, Africa and Central/South America. The concentration of particulate matter of diameter ≤ 2.5 μm (PM2.5) is an important metric to evaluate HAP risk, however epidemiological studies have demonstrated significant variation in HAP-PM2.5 concentrations at household, community and country levels. To quantify the global risk due to HAP exposure, novel estimation methods are needed, as financial and resource constraints render it difficult to monitor exposures in all relevant areas. METHODS A Bayesian, hierarchical HAP-PM2.5 global exposure model was developed using kitchen and female HAP-PM2.5 exposure data available in peer-reviewed studies from an updated World Health Organization Global HAP database. Cooking environment characteristics were selected using leave-one-out cross validation to predict quantitative HAP-PM2.5 measurements from 44 studies. Twenty-four hour HAP-PM2.5 kitchen concentrations and male, female and child exposures were estimated for 106 countries in Asia, Africa and Latin America. RESULTS A model incorporating fuel/stove type (traditional wood, improved biomass, coal, dung and gas/electric), urban/rural location, wet/dry season and socio-demographic index resulted in a Bayesian R2 of 0.57. Relative to rural kitchens using gas or electricity, the mean global 24-hour HAP-PM2.5 concentrations were 290 μg/m3 higher (range of regional averages: 110, 880) for traditional stoves, 150 μg/m3 higher (range of regional averages: 50, 290) for improved biomass stoves, 850 μg/m3 higher (range of regional averages: 310, 2600) for animal dung stoves, and 220 μg/m3 higher (range of regional averages: 80, 650) for coal stoves. The modeled global average female/kitchen exposure ratio was 0.40. Average modeled female exposures from cooking with traditional wood stoves were 160 μg/m3 in rural households and 170 μg/m3 in urban households. Average male and child rural area exposures from traditional wood stoves were 120 μg/m3 and 140 μg/m3, respectively; average urban area exposures were identical to average rural exposures among both sub-groups. CONCLUSIONS A Bayesian modeling approach was used to generate unique HAP-PM2.5 kitchen concentrations and personal exposure estimates for all countries, including those with little to no available quantitative HAP-PM2.5 exposure data. The global exposure model incorporating type of fuel-stove combinations can add specificity and reduce exposure misclassification to enable an improved global HAP risk assessment.


Atmospheric Chemistry and Physics | 2016

Impacts of coal burning on ambient PM 2.5 pollution in China

Qiao Ma; Siyi Cai; Shuxiao Wang; Bin Zhao; Randall V. Martin; Michael Brauer; Aaron Cohen; Jingkun Jiang; Wei Zhou; Jiming Hao; Joseph Frostad; Mohammad H. Forouzanfar; Richard T. Burnett


Annals of global health | 2017

The Global Burden of Lead Toxicity Attributable to Informal Used Lead-Acid Battery Sites

Bret Ericson; Phillip J. Landrigan; Mark Patrick Taylor; Joseph Frostad; Jack Caravanos; John Keith; Richard Fuller


Atmospheric Chemistry and Physics | 2017

Source influence on emission pathways and ambient PM 2.5 pollution over India (2015–2050)

Chandra Venkataraman; Michael Brauer; Kushal Tibrewal; Pankaj Sadavarte; Qiao Ma; Aaron Cohen; S. Chaliyakunnel; Joseph Frostad; Z. Klimont; Randall V. Martin; Dylan B. Millet; Sajeev Phillip; Katherine Walker; Shuxiao Wang

Collaboration


Dive into the Joseph Frostad's collaboration.

Top Co-Authors

Avatar

Michael Brauer

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg Freedman

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Kara Estep

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge