Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph G. Dubouzet is active.

Publication


Featured researches published by Joseph G. Dubouzet.


Plant Journal | 2008

The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production

Atsushi Ishihara; Yumi Hashimoto; Chihiro Tanaka; Joseph G. Dubouzet; Takahito Nakao; Fumio Matsuda; Takaaki Nishioka; Hisashi Miyagawa; Kyo Wakasa

The upregulation of the tryptophan (Trp) pathway in rice leaves infected by Bipolaris oryzae was indicated by: (i) enhanced enzyme activity of anthranilate synthase (AS), which regulates metabolic flux in the Trp pathway; (ii) elevated levels of the AS (OASA2, OASB1, and OASB2) transcripts; and (iii) increases in the contents of anthranilate, indole, and Trp. The measurement of the contents of Trp-derived metabolites by high-performance liquid chromatography coupled with tandem mass spectrometry revealed that serotonin and its hydroxycinnamic acid amides were accumulated in infected leaves. Serotonin accumulation was preceded by a transient increase in the tryptamine content and by marked activation of Trp decarboxylase, indicating that enhanced Trp production is linked to the formation of serotonin from Trp via tryptamine. Feeding of radiolabeled serotonin to inoculated leaves demonstrated that serotonin is incorporated into the cell walls of lesion tissue. The leaves of a propagating-type lesion mimic mutant (sl, Sekiguchi lesion) lacked both serotonin production and deposition of unextractable brown material at the infection sites, and showed increased susceptibility to B. oryzae infection. Treating the mutant with serotonin restored deposition of brown material at the lesion site. In addition, the serotonin treatment suppressed the growth of fungal hyphae in the leaf tissues of the sl mutant. These findings indicated that the activation of the Trp pathway is involved in the establishment of effective physical defenses by producing serotonin in rice leaves.


Plant Physiology | 2009

BRASSINOSTEROID UPREGULATED1, Encoding a Helix-Loop-Helix Protein, Is a Novel Gene Involved in Brassinosteroid Signaling and Controls Bending of the Lamina Joint in Rice

Atsunori Tanaka; Hitoshi Nakagawa; Chikako Tomita; Zenpei Shimatani; Miki Ohtake; Takahito Nomura; Chang-Jie Jiang; Joseph G. Dubouzet; Shoshi Kikuchi; Hitoshi Sekimoto; Takao Yokota; Tadao Asami; Takashi Kamakura; Masaki Mori

Brassinosteroids (BRs) are involved in many developmental processes and regulate many subsets of downstream genes throughout the plant kingdom. However, little is known about the BR signal transduction and response network in monocots. To identify novel BR-related genes in rice (Oryza sativa), we monitored the transcriptomic response of the brassinosteroid deficient1 (brd1) mutant, with a defective BR biosynthetic gene, to brassinolide treatment. Here, we describe a novel BR-induced rice gene BRASSINOSTEROID UPREGULATED1 (BU1), encoding a helix-loop-helix protein. Rice plants overexpressing BU1 (BU1:OX) showed enhanced bending of the lamina joint, increased grain size, and resistance to brassinazole, an inhibitor of BR biosynthesis. In contrast to BU1:OX, RNAi plants designed to repress both BU1 and its homologs displayed erect leaves. In addition, compared to the wild type, the induction of BU1 by exogenous brassinolide did not require de novo protein synthesis and it was weaker in a BR receptor mutant OsbriI (Oryza sativa brassinosteroid insensitive1, d61) and a rice G protein alpha subunit (RGA1) mutant d1. These results indicate that BU1 protein is a positive regulator of BR response: it controls bending of the lamina joint in rice and it is a novel primary response gene that participates in two BR signaling pathways through OsBRI1 and RGA1. Furthermore, expression analyses showed that BU1 is expressed in several organs including lamina joint, phloem, and epithelial cells in embryos. These results indicate that BU1 may participate in some other unknown processes modulated by BR in rice.


Plant Journal | 2009

Systematic approaches to using the FOX hunting system to identify useful rice genes.

Youichi Kondou; Mieko Higuchi; Shinya Takahashi; Tetsuya Sakurai; Takanari Ichikawa; Hirofumi Kuroda; Takeshi Yoshizumi; Yuko Tsumoto; Yoko Horii; Mika Kawashima; Yukako Hasegawa; Tomoko Kuriyama; Keiko Matsui; Miyako Kusano; Doris Albinsky; Hideki Takahashi; Yukiko Nakamura; Makoto Suzuki; Hitoshi Sakakibara; Mikiko Kojima; Kenji Akiyama; Atsushi Kurotani; Motoaki Seki; Miki Fujita; Akiko Enju; Naoki Yokotani; Tsutomu Saitou; Kozue Ashidate; Naka Fujimoto; Yasuo Ishikawa

Ectopic gene expression, or the gain-of-function approach, has the advantage that once the function of a gene is known the gene can be transferred to many different plants by transformation. We previously reported a method, called FOX hunting, that involves ectopic expression of Arabidopsis full-length cDNAs in Arabidopsis to systematically generate gain-of-function mutants. This technology is most beneficial for generating a heterologous gene resource for analysis of useful plant gene functions. As an initial model we generated more than 23,000 independent Arabidopsis transgenic lines that expressed rice fl-cDNAs (Rice FOX Arabidopsis lines). The short generation time and rapid and efficient transformation frequency of Arabidopsis enabled the functions of the rice genes to be analyzed rapidly. We screened rice FOX Arabidopsis lines for alterations in morphology, photosynthesis, element accumulation, pigment accumulation, hormone profiles, secondary metabolites, pathogen resistance, salt tolerance, UV signaling, high light tolerance, and heat stress tolerance. Some of the mutant phenotypes displayed by rice FOX Arabidopsis lines resulted from the expression of rice genes that had no homologs in Arabidopsis. This result demonstrated that rice fl-cDNAs could be used to introduce new gene functions in Arabidopsis. Furthermore, these findings showed that rice gene function could be analyzed by employing Arabidopsis as a heterologous host. This technology provides a framework for the analysis of plant gene function in a heterologous host and of plant improvement by using heterologous gene resources.


Plant Biotechnology Journal | 2011

Screening for resistance against Pseudomonas syringae in rice-FOX Arabidopsis lines identified a putative receptor-like cytoplasmic kinase gene that confers resistance to major bacterial and fungal pathogens in Arabidopsis and rice.

Joseph G. Dubouzet; Satoru Maeda; Shoji Sugano; Miki Ohtake; Nagao Hayashi; Takanari Ichikawa; Youichi Kondou; Hirofumi Kuroda; Yoko Horii; Minami Matsui; Kenji Oda; Hirohiko Hirochika; Hiroshi Takatsuji; Masaki Mori

Approximately 20 000 of the rice-FOX Arabidopsis transgenic lines, which overexpress 13 000 rice full-length cDNAs at random in Arabidopsis, were screened for bacterial disease resistance by dip inoculation with Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). The identities of the overexpressed genes were determined in 72 lines that showed consistent resistance after three independent screens. Pst DC3000 resistance was verified for 19 genes by characterizing other independent Arabidopsis lines for the same genes in the original rice-FOX hunting population or obtained by reintroducing the genes into ecotype Columbia by floral dip transformation. Thirteen lines of these 72 selections were also resistant to the fungal pathogen Colletotrichum higginsianum. Eight genes that conferred resistance to Pst DC3000 in Arabidopsis have been introduced into rice for overexpression, and transformants were evaluated for resistance to the rice bacterial pathogen, Xanthomonas oryzae pv. oryzae. One of the transgenic rice lines was highly resistant to Xanthomonas oryzae pv. oryzae. Interestingly, this line also showed remarkably high resistance to Magnaporthe grisea, the fungal pathogen causing rice blast, which is the most devastating rice disease in many countries. The causal rice gene, encoding a putative receptor-like cytoplasmic kinase, was therefore designated as BROAD-SPECTRUM RESISTANCE 1. Our results demonstrate the utility of the rice-FOX Arabidopsis lines as a tool for the identification of genes involved in plant defence and suggest the presence of a defence mechanism common between monocots and dicots.


Plant Science | 2013

Potential transgenic routes to increase tree biomass

Joseph G. Dubouzet; Timothy J. Strabala; Armin Wagner

Biomass is a prime target for genetic engineering in forestry because increased biomass yield will benefit most downstream applications such as timber, fiber, pulp, paper, and bioenergy production. Transgenesis can increase biomass by improving resource acquisition and product utilization and by enhancing competitive ability for solar energy, water, and mineral nutrients. Transgenes that affect juvenility, winter dormancy, and flowering have been shown to influence biomass as well. Transgenic approaches have increased yield potential by mitigating the adverse effects of prevailing stress factors in the environment. Simultaneous introduction of multiple genes for resistance to various stress factors into trees may help forest trees cope with multiple or changing environments. We propose multi-trait engineering for tree crops, simultaneously deploying multiple independent genes to address a set of genetically uncorrelated traits that are important for crop improvement. This strategy increases the probability of unpredictable (synergistic or detrimental) interactions that may substantially affect the overall phenotype and its long-term performance. The very limited ability to predict the physiological processes that may be impacted by such a strategy requires vigilance and care during implementation. Hence, we recommend close monitoring of the resultant transgenic genotypes in multi-year, multi-location field trials.


Plant Physiology | 2005

Structure-Based in Vitro Engineering of the Anthranilate Synthase, a Metabolic Key Enzyme in the Plant Tryptophan Pathway

Takuya Kanno; Akira Komatsu; Koji Kasai; Joseph G. Dubouzet; Minako Sakurai; Yasuko Ikejiri-Kanno; Kyo Wakasa; Yuzuru Tozawa

Rice (Oryza sativa) anthranilate synthase α-subunit, OASA2, was modified by in vitro mutagenesis based on structural information from bacterial homologs. Twenty-four amino acid residues, predicted as putative tryptophan binding sites or their proximal regions in the OASA2 sequence, were selected and 36 mutant OASA2 genes were constructed by PCR-based site-directed mutagenesis. Corresponding mutant proteins were synthesized in a combination of two in vitro systems, transcription with a bacteriophage SP6 RNA polymerase and translation with a wheat-embryo cell-free system. Enzymatic functions of the mutant proteins were simultaneously examined, and we found six mutants with elevated catalytic activity and five mutants with enhanced tolerance to feedback inhibition by tryptophan. Moreover, we observed that some sets of specific combinations of the novel mutations additively conferred both characteristics to the mutant enzymes. The functions of the mutant enzymes were confirmed in vivo. The free tryptophan content of mutant rice calli expressing OASA2 enzyme with a double mutation was 30-fold of that of untransformed calli. Thus, our in vitro approach utilizing structural information of bacterial homologs is a potent technique to generate designer enzymes with predefined functions.


Bioscience, Biotechnology, and Biochemistry | 2005

Transient RNA silencing of scoulerine 9-O-methyltransferase expression by double stranded RNA in Coptis japonica protoplasts.

Joseph G. Dubouzet; Takashi Morishige; Nanae Fujii; Chung-Il An; Eiichiro Fukusaki; Kentaro Ifuku; Fumihiko Sato

RNAi (RNA interference, RNA silencing) is a powerful tool for functional genomics, but the construction of an RNAi vector(s) and the establishment of stable transformants are time-consuming and laborious. Here we report the transient RNAi of endogenous biosynthetic genes involved in isoquinoline alkaloid biosynthesis in Coptis japonica protoplasts. Double stranded (ds) RNA fragments of various lengths prepared from several different positions of the coding sequence of scoulerine 9-O-methyltransferase (SMT) were introduced into C. japonica protoplasts by polyethylene glycol-mediated transformation, and their effects were monitored by reverse transcription-polymerase chain reaction. Substantial silencing of SMT gene expression was obtained by the introduction of these SMT dsRNAs. A significant reduction in SMT protein levels was also observed. The potentials of this transient RNAi system to evaluate the functions of biosynthetic genes in Coptis alkaloid research are discussed.


Plant Biotechnology Journal | 2013

Production of indole alkaloids by metabolic engineering of the tryptophan pathway in rice

Joseph G. Dubouzet; Fumio Matsuda; Atsushi Ishihara; Hisashi Miyagawa; Kyo Wakasa

Tryptophan decarboxylase (TDC) converts tryptophan (Trp) into tryptamine, consequently increasing the metabolic flow of tryptophan derivatives into the production of secondary metabolites such as indole alkaloids. We inserted an expression cassette containing OsTDC, a putative tryptophan decarboxylase gene from rice, into an expression plasmid vector containing OASA1D, the feedback-resistant anthranilate synthase alpha-subunit mutant (OASA1D). Overexpression of OASA1D has been reported to significantly increase Trp levels in rice. The co-expression of OsTDC and OASA1D in rice calli led to almost complete depletion of the Trp pool and a consequent increase in the tryptamine pool. This indicates that TDC inactivity is a contributory factor for the accumulation of Trp in rice transgenics overexpressing OASA1D. Metabolic profiling of the calli expressing OsTDC and OASA1D revealed the accumulation of serotonin and serotonin-derived indole compounds (potentially pharmacoactive β-carbolines) that have not been reported from rice. Rice calli overexpressing OASA1D:OASA1D is a novel system for the production of significant amounts of pharmacologically useful indole alkaloids in rice.


New Zealand journal of forestry science | 2014

Heterologous hybridisation to a Pinus microarray: profiling of gene expression in Pinus radiata saplings exposed to ethephon

Joseph G. Dubouzet; Lloyd Donaldson; Michael A. Black; Les McNoe; Vincent Liu; Gareth Lloyd-Jones

BackgroundThe design, construction and application of a Pinus microarray platform are described. The oligonucleotide microarray was developed using publicly available Pinus cDNA sequences mostly derived from Pinus taeda to test whether heterologous hybridisation of microarray probes will generate useful data when hybridised with cRNA constructed from the dominant New Zealand forestry species Pinus radiata.MethodsA comprehensive consensus sequence collection of Pinus cDNA sequences was collated into a non-redundant database used for automated design of 60-mer oligonucleotide microarray probes. The microarray slides, manufactured by Agilent Technologies (Palo Alto, California), were used to monitor gene expression in an induction experiment using 2-chloroethylphosphonic acid, common name ethephon and the active ingredient of the plant growth regulator Ethrel® (Bayer Crop Science). The transcriptomes from tissues of 2-year old Pinus radiata saplings +/− ethephon treatment were compared by hybridisation onto the Pinus microarray slides.ResultsStatistically significant differentially expressed genes identified by heterologous hybridisation to the Pinus microarray following ethephon induction included the up-regulation of genes in the xylem that were related to the metabolism of phenylpropanoids and flavonoids, and also defence responses, specifically against fungal/insect attack and oxidative stress. Bark, mucilaginous xylem and xylem generated largely mutually exclusive cohorts of genes and Gene Ontology (GO) classes. The results are also interpreted in reference to gross and microscopic morphological changes. Samples of gene responses were validated by quantitative RT-PCR.ConclusionThese results confirm the successful development of a Pinus microarray and demonstrate the utility of the microarray for transcriptomic research in Pinus radiata through heterologous hybridisation.


Methods of Molecular Biology | 2010

Identification of Regulatory Protein Genes Involved in Alkaloid Biosynthesis Using a Transient RNAi System

Yasuyuki Yamada; Nobuhiko Kato; Yasuhisa Kokabu; Qingyun Luo; Joseph G. Dubouzet; Fumihiko Sato

RNAi (RNA interference, RNA silencing) is a powerful tool in functional genomics. We report here the use of transient RNAi to isolate regulatory factor genes involved in isoquinoline alkaloid biosynthesis in Coptis japonica protoplasts. Double-stranded (ds) RNAs prepared against candidate regulatory factors, which were predicted from an EST library, were introduced into C. japonica protoplasts by polyethylene glycol (PEG)-mediated transformation, and their effects were monitored by real-time reverse transcription (RT)-polymerase chain reaction (PCR). The potential of this transient RNAi system to characterize the functions of regulatory factor genes in alkaloid research is discussed.

Collaboration


Dive into the Joseph G. Dubouzet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyo Wakasa

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hirofumi Kuroda

Toyama National College of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge