Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph Grudzinski is active.

Publication


Featured researches published by Joseph Grudzinski.


Nature Reviews Clinical Oncology | 2017

Beyond the margins: real-time detection of cancer using targeted fluorophores

Ray R. Zhang; Alexandra B. Schroeder; Joseph Grudzinski; Eben L. Rosenthal; Jason M. Warram; Anatoly Pinchuk; Kevin W. Eliceiri; John S. Kuo; Jamey P. Weichert

Over the past two decades, synergistic innovations in imaging technology have resulted in a revolution in which a range of biomedical applications are now benefiting from fluorescence imaging. Specifically, advances in fluorophore chemistry and imaging hardware, and the identification of targetable biomarkers have now positioned intraoperative fluorescence as a highly specific real-time detection modality for surgeons in oncology. In particular, the deeper tissue penetration and limited autofluorescence of near-infrared (NIR) fluorescence imaging improves the translational potential of this modality over visible-light fluorescence imaging. Rapid developments in fluorophores with improved characteristics, detection instrumentation, and targeting strategies led to the clinical testing in the early 2010s of the first targeted NIR fluorophores for intraoperative cancer detection. The foundations for the advances that underline this technology continue to be nurtured by the multidisciplinary collaboration of chemists, biologists, engineers, and clinicians. In this Review, we highlight the latest developments in NIR fluorophores, cancer-targeting strategies, and detection instrumentation for intraoperative cancer detection, and consider the unique challenges associated with their effective application in clinical settings.


Science Translational Medicine | 2014

Alkylphosphocholine Analogs for Broad-Spectrum Cancer Imaging and Therapy

Jamey P. Weichert; Paul A. Clark; Irawati Kandela; Abram Vaccaro; William Clarke; Marc Longino; Anatoly Pinchuk; Mohammed Farhoud; Kyle I. Swanson; John Floberg; Joseph Grudzinski; Benjamin Titz; Anne M. Traynor; Hong En Chen; Lance Hall; Christopher Pazoles; Perry J. Pickhardt; John S. Kuo

Tumor-specific alkylphosphocholine analogs were evaluated as imaging and therapy agents in patients and in animal models of human cancer. A Broad View of Cancer Many consider targeted or molecular imaging to be the optimal way to image cancer. Weichert and colleagues feel differently: Uptake of certain small molecules by all cancer cells can give a broad view of cancer, and perhaps also treat it. These small molecules are alkylphosphocholine (APC) analogs, which are taken up preferentially by cancer cells—as compared to, for example, fibroblasts—via plasma membranes and transported into the cells by lipid rafts. The authors tested the uptake of radiolabeled APC analogs in vitro and in vivo in animals in 57 different spontaneous and transgenic tumors, of both human and rodent origin. Because of the well-established efficacy of radiotherapy, the authors demonstrated that the APC analogs could be used to not only visualize tumors but also kill them. Translating this to cancer patients, Weichert et al. showed preliminary preferential uptake of a radiolabeled APC analog in brain tumors. These broadly applicable imaging and therapeutic APC-based agents have been tested in dozens of different human cancers, and preliminarily in people, and are now well poised for further translation to clinical trials. Many solid tumors contain an overabundance of phospholipid ethers relative to normal cells. Capitalizing on this difference, we created cancer-targeted alkylphosphocholine (APC) analogs through structure-activity analyses. Depending on the iodine isotope used, radioiodinated APC analog CLR1404 was used as either a positron emission tomography (PET) imaging (124I) or molecular radiotherapeutic (131I) agent. CLR1404 analogs displayed prolonged tumor-selective retention in 55 in vivo rodent and human cancer and cancer stem cell models. 131I-CLR1404 also displayed efficacy (tumor growth suppression and survival extension) in a wide range of human tumor xenograft models. Human PET/CT (computed tomography) and SPECT (single-photon emission computed tomography)/CT imaging in advanced-cancer patients with 124I-CLR1404 or 131I-CLR1404, respectively, demonstrated selective uptake and prolonged retention in both primary and metastatic malignant tumors. Combined application of these chemically identical APC-based radioisosteres will enable personalized dual modality cancer therapy of using molecular 124I-CLR1404 tumor imaging for planning 131I-CLR1404 therapy.


PLOS ONE | 2014

A Phase 1 Study of 131I-CLR1404 in Patients with Relapsed or Refractory Advanced Solid Tumors: Dosimetry, Biodistribution, Pharmacokinetics, and Safety

Joseph Grudzinski; Benjamin Titz; Kevin R. Kozak; William Clarke; Ernest Allen; LisaAnn Trembath; Michael G. Stabin; John L. Marshall; Steve Cho; Terence Z. Wong; Joanne E. Mortimer; Jamey P. Weichert

Introduction 131I-CLR1404 is a small molecule that combines a tumor-targeting moiety with a therapeutic radioisotope. The primary aim of this phase 1 study was to determine the administered radioactivity expected to deliver 400 mSv to the bone marrow. The secondary aims were to determine the pharmacokinetic (PK) and safety profiles of 131I-CLR1404. Methods Eight subjects with refractory or relapsed advanced solid tumors were treated with a single injection of 370 MBq of 131I-CLR1404. Whole body planar nuclear medicine scans were performed at 15–35 minutes, 4–6, 18–24, 48, 72, 144 hours, and 14 days post injection. Optional single photon emission computed tomography imaging was performed on two patients 6 days post injection. Clinical laboratory parameters were evaluated in blood and urine. Plasma PK was evaluated on 127I-CLR1404 mass measurements. To evaluate renal clearance of 131I-CLR1404, urine was collected for 14 days post injection. Absorbed dose estimates for target organs were determined using the RADAR method with OLINDA/EXM software. Results Single administrations of 370 MBq of 131I-CLR1404 were well tolerated by all subjects. No severe adverse events were reported and no adverse event was dose-limiting. Plasma 127I-CLR1404 concentrations declined in a bi-exponential manner with a mean t½ value of 822 hours. Mean Cmax and AUC(0-t) values were 72.2 ng/mL and 15753 ng•hr/mL, respectively. An administered activity of approximately 740 MBq is predicted to deliver 400 mSv to marrow. Conclusions Preliminary data suggest that 131I-CLR1404 is well tolerated and may have unique potential as an anti-cancer agent. Trial Registration ClinicalTrials.gov NCT00925275


Cancer Biotherapy and Radiopharmaceuticals | 2010

Dosimetric effectiveness of targeted radionuclide therapy based on a pharmacokinetic landscape.

Joseph Grudzinski; Ronald R. Burnette; Jamey P. Weichert; R Jeraj

Assessment of targeted radionuclide therapy (TRT) agent effectiveness based on its pharmacokinetic (PK) properties could provide means to expedited agent development or its rejection. A broad PK model that predicts the relative effectiveness of TRT agents based on the relationship between their normal body (k(12), k(21)) and tumor (k(34), k(43)) PK parameters has been developed. A classic two-compartment open model decoupled from a tumor was used to represent the body. Analytically solved differential equations were used to develop a relationship that predicts TRT effectiveness. Various PK scenarios were created by pairing normal body PK parameters of 38 pharmaceuticals found in the literature with estimated tumor PK parameters. Each PK scenario resulted in a maximum permissible injected activity that limited the whole-body dose to 2 Gy and yielded a maximum delivered tumor dose. The model suggests that a k(34):k(43) ratio greater than 5 and a k(12):k(21) ratio less than 1 is effective at delivering doses that ensure sufficient solid tumor control. It was also shown that there is no direct relationship between tumor dose and acid dissociation constant (pK(a)), lipophilicity (log P), and fraction unbound (fu), which are important physicochemical properties. This study suggests that although effective TRT may be difficult to achieve for solid tumors, good TRT agents must have extremely desirable normal body PKs in conjunction with very high tumor retention. The developed PK TRT model could serve as a tool to compare the relative dosimetric effectiveness of existing TRT agents and novel TRT agents early in the developmental phase to potentially reject those that possess unfavorable PKs.


Physics in Medicine and Biology | 2010

The biological effectiveness of targeted radionuclide therapy based on a whole-body pharmacokinetic model

Joseph Grudzinski; Wolfgang A. Tomé; Jamey P. Weichert; R Jeraj

Biologically effective dose (BED) may be more of a relevant quantity than absorbed dose for establishing tumour response relationships. By taking into account the dose rate and tissue-specific parameters such as repair and radiosensitivity, it is possible to compare the relative biological effects of different targeted radionuclide therapy (TRT) agents. The aim of this work was to develop an analytical tumour BED calculation for TRT that could predict a relative biological effect based on normal body and tumour pharmacokinetics. This work represents a step in the direction of establishing relative pharmacokinetic criteria of when the BED formalism is more applicable than absorbed dose for TRT. A previously established pharmacokinetic (PK) model for TRT was used and adapted into the BED formalism. An analytical equation for the protraction factor, which incorporates dose rate and repair rate, was derived. Dose rates within the normal body and tumour were related to the slopes of their time-activity curves which were determined by the ratios of their respective PK parameters. The relationships between the tumour influx-to-efflux ratio (k(34):k(43)), central compartment efflux-to-influx ratio (k(12):k(21)), central elimination (k(el)), and tumour repair rate (μ), and tumour BED were investigated. As the k(34):k(43) ratio increases and the k(12):k(21) ratio decreases, the difference between tumour BED and D increases. In contrast, as the k(34):k(43) ratios decrease and the k(12):k(21) ratios increase, the tumour BED approaches D. At large k(34):k(43) ratios, the difference between tumour BED and D increases to a maximum as k(el) increases. At small k(34):k(43) ratios, the tumour BED approaches D at very small k(el). At small μ and small k(34):k(43) ratios, the tumour BED approaches D. For large k(34):k(43) ratios, large μ values cause tumour BED to approach D. This work represents a step in the direction of establishing relative PK criteria of when the BED formalism is more applicable than absorbed dose for TRT. It also provides a framework by which the biological effects of different TRT agents can be compared in order to predict efficacy.


Physics in Medicine and Biology | 2017

Impact of PET and MRI threshold-based tumor volume segmentation on patient-specific targeted radionuclide therapy dosimetry using CLR1404

A Besemer; Benjamin Titz; Joseph Grudzinski; Jamey P. Weichert; John S. Kuo; H. Ian Robins; Lance Hall; B Bednarz

Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131I-CLR1404 voxel-level dose distribution was calculated from the 124I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average  ±  standard deviation (range) was 0.19  ±  0.13 (0.01-0.51), 0.30  ±  0.17 (0.03-0.67), and 0.75  ±  0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq-1 (0.07-0.37 Gy GBq-1). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for standard protocols for multimodality tumor segmentation in TRT dosimetry.


Molecular Imaging | 2015

Breast Cancer Imaging Using the Near-Infrared Fluorescent Agent, CLR1502

Melissa L. Korb; Jason M. Warram; Joseph Grudzinski; Jamey P. Weichert; Justin Jeffery; Eben L. Rosenthal

Positive margins after breast conservation surgery represent a significant problem in the treatment of breast cancer. The near-infrared fluorescence agent CLR1502 (Cellectar Biosciences, Madison, WI) was studied in a preclinical breast cancer model to determine imaging properties and ability to detect small islands of malignancy. Nude mice bearing human breast cancer flank xenografts were given a systemic injection of CLR1502, and imaging was performed using LUNA (Novadaq Technologies Inc., Richmond, BC) and Pearl Impulse (LI-COR Biosciences, Lincoln, NE) devices. Normal tissues were examined for fluorescence signal, and conventional and fluorescence histology was performed using the Odyssey scanner. Peak tumor to background ratio occurred 2 days after injection with CLR1502. The smallest amount of tumor that was imaged and detected using these devices was 1.9 mg, equivalent to 1.9 × 106 cells. The highest fluorescence signal was seen in tumor and normal lymph node tissue, and the lowest fluorescence signal was seen in muscle and plasma. Human breast cancer tumors can be imaged in vivo with multiple optical imaging platforms using CLR1502. This pilot study supports further investigations of this fluorescent agent for improving surgical resection of malignancies, with the goal of eventual clinical translation.Positive margins after breast conservation surgery represent a significant problem in the treatment of breast cancer. The near-infrared fluorescence agent CLR1502 (Cellectar Biosciences, Madison, WI) was studied in a preclinical breast cancer model to determine imaging properties and ability to detect small islands of malignancy. Nude mice bearing human breast cancer flank xenografts were given a systemic injection of CLR1502, and imaging was performed using LUNA (Novadaq Technologies Inc., Richmond, BC) and Pearl Impulse (LI-COR Biosciences, Lincoln, NE) devices. Normal tissues were examined for fluorescence signal, and conventional and fluorescence histology was performed using the Odyssey scanner. Peak tumor to background ratio occurred 2 days after injection with CLR1502. The smallest amount of tumor that was imaged and detected using these devices was 1.9 mg, equivalent to 1.9 × 106 cells. The highest fluorescence signal was seen in tumor and normal lymph node tissue, and the lowest fluorescence signal was seen in muscle and plasma. Human breast cancer tumors can be imaged in vivo with multiple optical imaging platforms using CLR1502. This pilot study supports further investigations of this fluorescent agent for improving surgical resection of malignancies, with the goal of eventual clinical translation.


Cancer Biotherapy and Radiopharmaceuticals | 2018

Development and Validation of RAPID: A Patient-Specific Monte Carlo Three-Dimensional Internal Dosimetry Platform

A Besemer; You Ming Yang; Joseph Grudzinski; Lance Hall; B Bednarz

This work describes the development and validation of a patient-specific Monte Carlo internal dosimetry platform called RAPID (Radiopharmaceutical Assessment Platform for Internal Dosimetry). RAPID utilizes serial PET/CT or SPECT/CT images to calculate voxelized three-dimensional (3D) internal dose distributions with the Monte Carlo code Geant4. RAPIDs dosimetry calculations were benchmarked against previously published S-values and specific absorbed fractions (SAFs) calculated for monoenergetic photon and electron sources within the Zubal phantom and for S-values calculated for a variety of radionuclides within spherical tumor phantoms with sizes ranging from 1 to 1000 g. The majority of the S-values and SAFs calculated in the Zubal Phantom were within 5% of the previously published values with the exception of a few 10 keV photon SAFs that agreed within 10%, and one value within 16%. The S-values calculated in the spherical tumor phantoms agreed within 2% for 177Lu, 131I, 125I, 18F, and 64Cu, within 3.5% for 211At and 213Bi, within 6.5% for 153Sm, 111In, 89Zr, and 223Ra, and within 9% for 90Y, 68Ga, and 124I. In conclusion, RAPID is capable of calculating accurate internal dosimetry at the voxel-level for a wide variety of radionuclides and could be a useful tool for calculating patient-specific 3D dose distributions.


Cancer Biotherapy and Radiopharmaceuticals | 2018

Pretreatment CLR 124 Positron Emission Tomography Accurately Predicts CLR 131 Three-Dimensional Dosimetry in Triple-Negative Breast Cancer Patient

A Besemer; Joseph Grudzinski; Jamey P. Weichert; Lance Hall; B Bednarz

INTRODUCTION CLR1404 is a theranostic molecular agent that can be radiolabeled with 124I (CLR 124) for positron emission tomography (PET) imaging, or 131I (CLR 131) for single-photon emission computed tomography (SPECT) imaging and targeted radionuclide therapy. This pilot study evaluated a pretreatment dosimetry methodology in a triple-negative breast cancer patient who was uniquely enrolled in both a CLR 124 PET imaging clinical trial and a CLR 131 therapeutic dose escalation clinical trial. MATERIALS AND METHODS Three-dimensional PET/CT images were acquired at 1, 3, 24, 48, and 120 h postinjection of 178 MBq CLR 124. One month later, pretherapy 2D whole-body planar images were acquired at 0.25, 5, 24, 48, and 144 h postinjection of 370 MBq CLR 131. Following the therapeutic administration of 1990 MBq CLR 131, 3D SPECT/CT images were acquired at 74, 147, 334, and 505 h postinjection. The therapeutic CLR 131 voxel-level absorbed dose was estimated from PET (RAPID PET) and SPECT (RAPID SPECT) images using a Geant4-based Monte Carlo dosimetry platform called RAPID (Radiopharmaceutical Assessment Platform for Internal Dosimetry), and region of interest (ROI) mean doses were also estimated using the OLINDA/EXM software based on PET (OLINDA PET), SPECT (OLINDA SPECT), and planar (OLINDA planar) images. RESULTS The RAPID PET and OLINDA PET tracer-predicted ROI mean doses correlated well (m ≥ 0.631, R2 ≥ 0.694, p ≤ 0.01) with both the RAPID SPECT and OLINDA SPECT therapeutic mean doses. The 2D planar images did not have any significant correlations. The ROI mean doses differed by -4% to -43% between RAPID and OLINDA/EXM, and by -19% to 29% between PET and SPECT. The 3D dose distributions and dose volume histograms calculated with RAPID were similar for the PET/CT and SPECT/CT. CONCLUSIONS This pilot study demonstrated that CLR 124 pretreatment PET images can be used to predict CLR 131 3D therapeutic dosimetry better than CLR 131 2D planar images. In addition, unlike OLINDA/EXM, Monte Carlo dosimetry methods were capable of accurately predicting dose heterogeneity, which is important for predicting dose-response relationships and clinical outcomes.


Medical Physics | 2015

WE‐EF‐BRA‐04: Evaluation of Dosimetric Uncertainties in Individualized Targeted Radionuclide Therapy (TRT) Treatment Planning Using Pre‐Clinical Data

A Besemer; Joseph Grudzinski; Benjamin Titz; J B Bednarz

Purpose: Dosimetry for targeted radionuclide therapy (TRT) is moving away from conventional model-based methods towards patient-specific approaches. To address this need, a Monte Carlo (MC) dosimetry platform was developed to estimate patient-specific therapeutic 3D dose distributions based on pre-treatment imaging. However, because a standard practice for patient-specific internal dosimetry has not yet been established, there are many sources of dosimetric uncertainties. The goal of this work was to quantify the sensitivity of various parameters on MC dose estimations. Methods: The ‘diapeutic’ agent, CLR1404, was used as a proof-of-principle compound in this work. CLR1404 can be radiolabeled with either 1 2⁴I for PET imaging or 1 3 1I for radiotherapy or SPECT imaging. PET/CT images of 5 mice were acquired out to 240 hrs post-injection of 1 2⁴I-CLR1404. The therapeutic 1 3 1I-CLR1404 absorbed dose (AD) distribution was calculated using a Geant4-based MC dosimetry platform. A series of sensitivity studies were performed. The variables that were investigated included the PET/CT voxel resolution, partial volume corrections (PVC), material segmentation, inter-observer contouring variability, and the pre-treatment image acquisition frequency. Results: Resampling the PET/CT voxel size between 0.2–0.8 mm resulted in up to a 13% variation in the mean AD. Application of the PVC increased the mean AD by 0.5–11.2%. Less than 1% differences in ROI mean AD were observed between the tissue segmentation schemes using 4 and 27 different material compositions. Inter-observer contouring variability led to up to a 20% CoV (stdev/mean) in the mean AD between the users. Varying the number and frequency of pre-treatment images used resulted in changes in mean AD up to 176% compared to the case using all 12 images. Conclusion: Voxel resolution, contour segmentation, the image acquisition protocol most significantly impacted patient-specific TRT dosimetry. Further work is needed to develop a standard protocol that optimizes accuracy and efficiency for patient-specific internal dosimetry. BT and JG are affiliated with Cellectar Biosciences which owns the licensing rights to CLR1404 and related compounds.

Collaboration


Dive into the Joseph Grudzinski's collaboration.

Top Co-Authors

Avatar

Jamey P. Weichert

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Benjamin Titz

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

B Bednarz

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Lance Hall

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

A Besemer

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

R Jeraj

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John S. Kuo

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin R. Kozak

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge