Lance Hall
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lance Hall.
Neurobiology of Aging | 2014
Sterling C. Johnson; Bradley T. Christian; Ozioma C. Okonkwo; Jennifer M. Oh; Sandra Harding; Guofan Xu; Ansel T. Hillmer; Dustin Wooten; Dhanabalan Murali; Todd E. Barnhart; Lance Hall; Annie M. Racine; William E. Klunk; Chester A. Mathis; Barbara B. Bendlin; Catherine L. Gallagher; Cynthia M. Carlsson; Howard A. Rowley; Bruce P. Hermann; N. Maritza Dowling; Sanjay Asthana; Mark A. Sager
To determine the relationship between amyloid burden and neural function in healthy adults at risk for Alzheimers Disease (AD), we used multimodal imaging with [C-11]Pittsburgh compound B positron emission tomography, [F-18]fluorodeoxyglucose, positron emission tomography , and magnetic resonance imaging, together with cognitive measurement in 201 subjects (mean age, 60.1 years; range, 46-73 years) from the Wisconsin Registry for Alzheimers Prevention. Using a qualitative rating, 18% of the samples were strongly positive Beta-amyloid (Aβ+), 41% indeterminate (Aβi), and 41% negative (Aβ-). Aβ+ was associated with older age, female sex, and showed trends for maternal family history of AD and APOE4. Relative to the Aβ- group, Aβ+ and Aβi participants had increased glucose metabolism in the bilateral thalamus; Aβ+ participants also had increased metabolism in the bilateral superior temporal gyrus. Aβ+ participants exhibited increased gray matter in the lateral parietal lobe bilaterally relative to the Aβ- group, and no areas of significant atrophy. Cognitive performance and self report cognitive and affective symptoms did not differ between groups. Amyloid burden can be identified in adults at a mean age of 60 years and is accompanied by glucometabolic increases in specific areas, but not atrophy or cognitive loss. This asymptomatic stage may be an opportune window for intervention to prevent progression to symptomatic AD.
Science Translational Medicine | 2014
Jamey P. Weichert; Paul A. Clark; Irawati Kandela; Abram Vaccaro; William Clarke; Marc Longino; Anatoly Pinchuk; Mohammed Farhoud; Kyle I. Swanson; John Floberg; Joseph Grudzinski; Benjamin Titz; Anne M. Traynor; Hong En Chen; Lance Hall; Christopher Pazoles; Perry J. Pickhardt; John S. Kuo
Tumor-specific alkylphosphocholine analogs were evaluated as imaging and therapy agents in patients and in animal models of human cancer. A Broad View of Cancer Many consider targeted or molecular imaging to be the optimal way to image cancer. Weichert and colleagues feel differently: Uptake of certain small molecules by all cancer cells can give a broad view of cancer, and perhaps also treat it. These small molecules are alkylphosphocholine (APC) analogs, which are taken up preferentially by cancer cells—as compared to, for example, fibroblasts—via plasma membranes and transported into the cells by lipid rafts. The authors tested the uptake of radiolabeled APC analogs in vitro and in vivo in animals in 57 different spontaneous and transgenic tumors, of both human and rodent origin. Because of the well-established efficacy of radiotherapy, the authors demonstrated that the APC analogs could be used to not only visualize tumors but also kill them. Translating this to cancer patients, Weichert et al. showed preliminary preferential uptake of a radiolabeled APC analog in brain tumors. These broadly applicable imaging and therapeutic APC-based agents have been tested in dozens of different human cancers, and preliminarily in people, and are now well poised for further translation to clinical trials. Many solid tumors contain an overabundance of phospholipid ethers relative to normal cells. Capitalizing on this difference, we created cancer-targeted alkylphosphocholine (APC) analogs through structure-activity analyses. Depending on the iodine isotope used, radioiodinated APC analog CLR1404 was used as either a positron emission tomography (PET) imaging (124I) or molecular radiotherapeutic (131I) agent. CLR1404 analogs displayed prolonged tumor-selective retention in 55 in vivo rodent and human cancer and cancer stem cell models. 131I-CLR1404 also displayed efficacy (tumor growth suppression and survival extension) in a wide range of human tumor xenograft models. Human PET/CT (computed tomography) and SPECT (single-photon emission computed tomography)/CT imaging in advanced-cancer patients with 124I-CLR1404 or 131I-CLR1404, respectively, demonstrated selective uptake and prolonged retention in both primary and metastatic malignant tumors. Combined application of these chemically identical APC-based radioisosteres will enable personalized dual modality cancer therapy of using molecular 124I-CLR1404 tumor imaging for planning 131I-CLR1404 therapy.
Epilepsy & Behavior | 2011
Aaron F. Struck; Lance Hall; John Floberg; Scott B. Perlman; Douglas A. Dulli
OBJECTIVES The goals of this work were (1) to determine the effect of [(18)F]fluorodeoxyglucose positron emission tomography (FDG-PET), MRI, and EEG on the decision to perform temporal lobe epilepsy (TLE) surgery, and (2) to determine if FDG-PET, MRI, or EEG predicts surgical outcome. METHODS All PET scans ordered (2000-2010) for epilepsy or seizures were tabulated. Medical records were investigated to determine eligibility and collect data. Statistical analysis included odds ratios, κ statistics, univariate analysis, and logistic regression. RESULTS Of the 186 patients who underwent FDG-PET, 124 had TLE, 50 were surgical candidates, and 34 had surgery with post-operative follow-up. Median length of follow-up was 24 months. MRI, FDG-PET, and EEG were significant predictors of surgical candidacy (P<0.001) with odds ratios of 42.8, 20.4, and 6.3, respectively. FDG-PET was the only significant predictor of postoperative outcome (P<0.01). CONCLUSION MRI showed a trend toward having the most influence on surgical candidacy, but only FDG-PET predicted surgical outcome.
Medical Physics | 2012
John Floberg; Charles A. Mistretta; Jamey P. Weichert; Lance Hall; James E. Holden; Bradley T. Christian
PURPOSE Highly constrained backprojection-local reconstruction (HYPR-LR) has made a dramatic impact on magnetic resonance angiography (MRA) and shows promise for positron emission tomography (PET) because of the improvements in the signal-to-noise ratio (SNR) it provides dynamic images. For PET in particular, HYPR-LR could improve kinetic analysis methods that are sensitive to noise. In this work, the authors closely examine the performance of HYPR-LR in the context of kinetic analysis, they develop an implementation of the algorithm that can be tailored to specific PET imaging tasks to minimize bias and maximize improvement in variance, and they provide a framework for validating the use of HYPR-LR processing for a particular imaging task. METHODS HYPR-LR can introduce errors into non sparse PET studies that might bias kinetic parameter estimates. An implementation of HYPR-LR is proposed that uses multiple temporally summed composite images that are formed based on the kinetics of the tracer being studied (HYPR-LR-MC). The effects of HYPR-LR-MC and of HYPR-LR using a full composite formed with all the frames in the study (HYPR-LR-FC) on the kinetic analysis of Pittsburgh compound-B ([11C]-PIB) are studied. HYPR-LR processing is compared to spatial smoothing. HYPR-LR processing was evaluated using both simulated and human studies. Nondisplaceable binding potential (BP(ND)) parametric images were generated from fifty noise realizations of the same numerical phantom and eight [(11)C]-PIB positive human scans before and after HYPR-LR processing or smoothing using the reference region Logan graphical method and receptor parametric mapping (RPM2). The bias and coefficient of variation in the frontal and parietal cortex in the simulated parametric images were calculated to evaluate the absolute performance of HYPR-LR processing. Bias in the human data was evaluated by comparing parametric image BP(ND) values averaged over large regions of interest (ROIs) to Logan estimates of the BP(ND) from TACs averaged over the same ROIs. Variance was assessed qualitatively in the parametric images and semiquantitatively by studying the correlation between voxel BP(ND) estimates from Logan analysis and RPM2. RESULTS Both the simulated and human data show that HYPR-LR-FC overestimates BP(ND) values in regions of high [(11)C]-PIB uptake. HYPR-LR-MC virtually eliminates this bias. Both implementations of HYPR-LR reduce variance in the parametric images generated with both Logan analysis and RPM2, and HYPR-LR-FC provides a greater reduction in variance. This reduction in variance nearly eliminates the noise-dependent Logan bias. The variance reduction is greater for the Logan method, particularly for HYPR-LR-MC, and the variance in the resulting Logan images is comparable to that in the RPM2 images. HYPR-LR processing compares favorably with spatial smoothing, particularly when the data are analyzed with the Logan method, as it provides a reduction in variance with no loss of spatial resolution. CONCLUSIONS HYPR-LR processing shows significant potential for reducing variance in parametric images, and can eliminate the noise-dependent Logan bias. HYPR-LR-FC processing provides the greatest reduction in variance but introduces a positive bias into the BP(ND) of high-uptake border regions. The proposed method for forming HYPR composite images, HYPR-LR-MC, eliminates this bias at the cost of less variance reduction.
PLOS ONE | 2014
Dustin A. Deming; Molly Maher; Alyssa A. Leystra; Joseph P. Grudzinski; Linda Clipson; Dawn M. Albrecht; Mary Kay Washington; Kristina A. Matkowskyj; Lance Hall; Sam J. Lubner; Jamey P. Weichert; Richard B. Halberg
The treatment of localized colorectal cancer (CRC) depends on resection of the primary tumor with adequate margins and sufficient lymph node sampling. A novel imaging agent that accumulates in CRCs and the associated lymph nodes is needed. Cellectar Biosciences has developed a phospholipid ether analog platform that is both diagnostic and therapeutic. CLR1502 is a near-infrared fluorescent molecule, whereas 124/131I-CLR1404 is under clinical investigation as a PET tracer/therapeutic agent imaged by SPECT. We investigated the use of CLR1502 for the detection of intestinal cancers in a murine model and 131I-CLR1404 in a patient with metastatic CRC. Mice that develop multiple intestinal tumors ranging from adenomas to locally advanced adenocarcinomas were utilized. After 96 hours post CLR1502 injection, the intestinal tumors were analyzed using a Spectrum IVIS (Perkin Elmer) and a Fluobeam (Fluoptics). The intensity of the fluorescent signal was correlated with the histological characteristics for each tumor. Colon adenocarcinomas demonstrated increased accumulation of CLR1502 compared to non-invasive lesions (total radiant efficiency: 1.76×1010 vs 3.27×109 respectively, p = 0.006). Metastatic mesenteric tumors and uninvolved lymph nodes were detected with CLR1502. In addition, SPECT imaging with 131I-CLR1404 was performed as part of a clinical trial in patients with advanced solid tumors. 131I-CLR1404 was shown to accumulate in metastatic tumors in a patient with colorectal adenocarcinoma. Together, these compounds might enhance our ability to properly resect CRCs through better localization of the primary tumor and improved lymph node identification as well as detect distant disease.
CNS oncology | 2016
Ray R. Zhang; Kyle I. Swanson; Lance Hall; Jamey P. Weichert; John S. Kuo
The following is a special report on alkylphosphocholine analogs as targeted imaging and therapy agents for cancer, and their potential role in diagnosis and treatment in glioblastoma and brain metastases. These novel cancer-targeting agents display impressive tumor avidity with low background in the normal brain, and multimodal diagnostic imaging and therapy capabilities. The use of these agents may significantly improve diagnosis, treatment and post-treatment follow-up in patients with brain malignancies.
Cancer Investigation | 2015
Sam J. Lubner; Jacqueline Mullvain; Scott B. Perlman; Michael J. Pishvaian; Joanne E. Mortimer; Katherine Oliver; Jennifer Heideman; Lance Hall; Jamey P. Weichert; Glenn Liu
This study explores the imaging and therapeutic properties of a novel radiopharmaceutical, 131I-CLR1404. Phase 1a data demonstrated safety and tumor localization by SPECT-CT. This 1b study assessed safety, imaging characteristics, and possible antineoplastic properties and provided further proof-of- concept of phospholipid ether analogues’ retention within tumors. A total of 10 patients received 131I-CLR1404 in an adaptive dose-escalation design. Imaging characteristics were consistent with prior studies, showing tumor uptake in primary tumors and metastases. At doses of 31.25 mCi/m2 and greater, DLTs were thrombocytopenia and neutropenia. Disease- specific studies are underway to identify cancers most likely to benefit from 131I-CLR1404 monotherapy.
Physics in Medicine and Biology | 2017
A Besemer; Benjamin Titz; Joseph Grudzinski; Jamey P. Weichert; John S. Kuo; H. Ian Robins; Lance Hall; B Bednarz
Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131I-CLR1404 voxel-level dose distribution was calculated from the 124I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average ± standard deviation (range) was 0.19 ± 0.13 (0.01-0.51), 0.30 ± 0.17 (0.03-0.67), and 0.75 ± 0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq-1 (0.07-0.37 Gy GBq-1). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for standard protocols for multimodality tumor segmentation in TRT dosimetry.
ieee nuclear science symposium | 2007
Jeffrey L. Lacy; Leticia Guerrero; Regina Y. Chiu; Liang Sun; Lance Hall; Charles K. Stone
Copper(II) bis(thiosemicarbazone) compounds show promise for clinical use in the measurement of tissue blood flow with positron emission tomography(PET). 62Cu-PTSM has been extensively evaluated as a myocardial and general purpose flow agent. Although an effective agent, it exhibits albumin binding in human plasma which limits its performance in high blood flow imaging. A new agent, 62Cu-ETS, exhibits no such species differentiation of albumin binding. In this study, ten healthy human volunteers were subjected to 62Cu-ETS PET imaging to obtain percent injected dose values for major organs, including the blood, brain, kidneys, liver, lungs, and myocardium, by measuring count densities within defined regions of interest (ROIs) around the general anatomical structure and dividing by the injected dose, correcting for losses at the injection site. These results were then compared to an analogous 62Cu-PTSM PET imaging study completed previously utilizing the same imaging methods. For effective comparison, data for the 62Cu-PTSM study was reanalyzed using the same ROI procedure as was performed on the 62Cu-ETS study. 62Cu-ETS shows similar myocardial uptake compared to 62Cu-PTSM, but kidney uptake is two fold higher than resting myocardium compared with only 1.3 fold for 62Cu-PTSM. Hence 62Cu-ETS shows high promise for the important application of hyperemic myocardial flow measurement as well as renal imaging. An additional advantage of 62Cu-ETS is that liver uptake which can interfere with myocardial imaging is reduced by about 2 fold relative to that of 62Cu-PTSM.
Cancer Biotherapy and Radiopharmaceuticals | 2018
A Besemer; You Ming Yang; Joseph Grudzinski; Lance Hall; B Bednarz
This work describes the development and validation of a patient-specific Monte Carlo internal dosimetry platform called RAPID (Radiopharmaceutical Assessment Platform for Internal Dosimetry). RAPID utilizes serial PET/CT or SPECT/CT images to calculate voxelized three-dimensional (3D) internal dose distributions with the Monte Carlo code Geant4. RAPIDs dosimetry calculations were benchmarked against previously published S-values and specific absorbed fractions (SAFs) calculated for monoenergetic photon and electron sources within the Zubal phantom and for S-values calculated for a variety of radionuclides within spherical tumor phantoms with sizes ranging from 1 to 1000 g. The majority of the S-values and SAFs calculated in the Zubal Phantom were within 5% of the previously published values with the exception of a few 10 keV photon SAFs that agreed within 10%, and one value within 16%. The S-values calculated in the spherical tumor phantoms agreed within 2% for 177Lu, 131I, 125I, 18F, and 64Cu, within 3.5% for 211At and 213Bi, within 6.5% for 153Sm, 111In, 89Zr, and 223Ra, and within 9% for 90Y, 68Ga, and 124I. In conclusion, RAPID is capable of calculating accurate internal dosimetry at the voxel-level for a wide variety of radionuclides and could be a useful tool for calculating patient-specific 3D dose distributions.