Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph H. Vineis is active.

Publication


Featured researches published by Joseph H. Vineis.


The ISME Journal | 2015

Minimum entropy decomposition: Unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences

A. Murat Eren; Hilary G. Morrison; Pamela J Lescault; Julie Reveillaud; Joseph H. Vineis; Mitchell L. Sogin

Molecular microbial ecology investigations often employ large marker gene datasets, for example, ribosomal RNAs, to represent the occurrence of single-cell genomes in microbial communities. Massively parallel DNA sequencing technologies enable extensive surveys of marker gene libraries that sometimes include nearly identical sequences. Computational approaches that rely on pairwise sequence alignments for similarity assessment and de novo clustering with de facto similarity thresholds to partition high-throughput sequencing datasets constrain fine-scale resolution descriptions of microbial communities. Minimum Entropy Decomposition (MED) provides a computationally efficient means to partition marker gene datasets into ‘MED nodes’, which represent homogeneous operational taxonomic units. By employing Shannon entropy, MED uses only the information-rich nucleotide positions across reads and iteratively partitions large datasets while omitting stochastic variation. When applied to analyses of microbiomes from two deep-sea cryptic sponges Hexadella dedritifera and Hexadella cf. dedritifera, MED resolved a key Gammaproteobacteria cluster into multiple MED nodes that are specific to different sponges, and revealed that these closely related sympatric sponge species maintain distinct microbial communities. MED analysis of a previously published human oral microbiome dataset also revealed that taxa separated by less than 1% sequence variation distributed to distinct niches in the oral cavity. The information theory-guided decomposition process behind the MED algorithm enables sensitive discrimination of closely related organisms in marker gene amplicon datasets without relying on extensive computational heuristics and user supervision.


PeerJ | 2015

Anvi'o: an advanced analysis and visualization platform for 'omics data.

A. Murat Eren; Özcan C. Esen; Christopher Quince; Joseph H. Vineis; Hilary G. Morrison; Mitchell L. Sogin; Tom O. Delmont

Advances in high-throughput sequencing and ‘omics technologies are revolutionizing studies of naturally occurring microbial communities. Comprehensive investigations of microbial lifestyles require the ability to interactively organize and visualize genetic information and to incorporate subtle differences that enable greater resolution of complex data. Here we introduce anvi’o, an advanced analysis and visualization platform that offers automated and human-guided characterization of microbial genomes in metagenomic assemblies, with interactive interfaces that can link ‘omics data from multiple sources into a single, intuitive display. Its extensible visualization approach distills multiple dimensions of information about each contig, offering a dynamic and unified work environment for data exploration, manipulation, and reporting. Using anvi’o, we re-analyzed publicly available datasets and explored temporal genomic changes within naturally occurring microbial populations through de novo characterization of single nucleotide variations, and linked cultivar and single-cell genomes with metagenomic and metatranscriptomic data. Anvi’o is an open-source platform that empowers researchers without extensive bioinformatics skills to perform and communicate in-depth analyses on large ‘omics datasets.


PLOS ONE | 2013

A Filtering Method to Generate High Quality Short Reads Using Illumina Paired-End Technology

A. Murat Eren; Joseph H. Vineis; Hilary G. Morrison; Mitchell L. Sogin

Consensus between independent reads improves the accuracy of genome and transcriptome analyses, however lack of consensus between very similar sequences in metagenomic studies can and often does represent natural variation of biological significance. The common use of machine-assigned quality scores on next generation platforms does not necessarily correlate with accuracy. Here, we describe using the overlap of paired-end, short sequence reads to identify error-prone reads in marker gene analyses and their contribution to spurious OTUs following clustering analysis using QIIME. Our approach can also reduce error in shotgun sequencing data generated from libraries with small, tightly constrained insert sizes. The open-source implementation of this algorithm in Python programming language with user instructions can be obtained from https://github.com/meren/illumina-utils.


The ISME Journal | 2015

A single genus in the gut microbiome reflects host preference and specificity

A. Murat Eren; Mitchell L. Sogin; Hilary G. Morrison; Joseph H. Vineis; Jenny C. Fisher; Ryan J. Newton; Sandra L. McLellan

Delineating differences in gut microbiomes of human and animal hosts contributes towards understanding human health and enables new strategies for detecting reservoirs of waterborne human pathogens. We focused upon Blautia, a single microbial genus that is important for nutrient assimilation as preliminary work suggested host-related patterns within members of this genus. In our dataset of 57 M sequence reads of the V6 region of the 16S ribosomal RNA gene in samples collected from seven host species, we identified 200 high-resolution taxonomic units within Blautia using oligotyping. Our analysis revealed 13 host-specific oligotypes that occurred exclusively in fecal samples of humans (three oligotypes), swine (six oligotypes), cows (one oligotype), deer (one oligotype), or chickens (two oligotypes). We identified an additional 171 oligotypes that exhibited differential abundance patterns among all the host species. Blautia oligotypes in the human population obtained from sewage and fecal samples displayed remarkable continuity. Oligotypes from only 10 Brazilian human fecal samples collected from individuals in a rural village encompassed 97% of all Blautia oligotypes found in a Brazilian sewage sample from a city of three million people. Further, 75% of the oligotypes in Brazilian human fecal samples matched those in US sewage samples, implying that a universal set of Blautia strains may be shared among culturally and geographically distinct human populations. Such strains can serve as universal markers to assess human fecal contamination in environmental samples. Our results indicate that host-specificity and host-preference patterns of organisms within this genus are driven by host physiology more than dietary habits.


Mbio | 2015

Sewage Reflects the Microbiomes of Human Populations

Ryan J. Newton; Sandra L. McLellan; Deborah K. Dila; Joseph H. Vineis; Hilary G. Morrison; A. Murat Eren; Mitchell L. Sogin

ABSTRACT Molecular characterizations of the gut microbiome from individual human stool samples have identified community patterns that correlate with age, disease, diet, and other human characteristics, but resources for marker gene studies that consider microbiome trends among human populations scale with the number of individuals sampled from each population. As an alternative strategy for sampling populations, we examined whether sewage accurately reflects the microbial community of a mixture of stool samples. We used oligotyping of high-throughput 16S rRNA gene sequence data to compare the bacterial distribution in a stool data set to a sewage influent data set from 71 U.S. cities. On average, only 15% of sewage sample sequence reads were attributed to human fecal origin, but sewage recaptured most (97%) human fecal oligotypes. The most common oligotypes in stool matched the most common and abundant in sewage. After informatically separating sequences of human fecal origin, sewage samples exhibited ~3× greater diversity than stool samples. Comparisons among municipal sewage communities revealed the ubiquitous and abundant occurrence of 27 human fecal oligotypes, representing an apparent core set of organisms in U.S. populations. The fecal community variability among U.S. populations was significantly lower than among individuals. It clustered into three primary community structures distinguished by oligotypes from either: Bacteroidaceae, Prevotellaceae, or Lachnospiraceae/Ruminococcaceae. These distribution patterns reflected human population variation and predicted whether samples represented lean or obese populations with 81 to 89% accuracy. Our findings demonstrate that sewage represents the fecal microbial community of human populations and captures population-level traits of the human microbiome. IMPORTANCE The gut microbiota serves important functions in healthy humans. Numerous projects aim to define a healthy gut microbiome and its association with health states. However, financial considerations and privacy concerns limit the number of individuals who can be screened. By analyzing sewage from 71 cities, we demonstrate that geographically distributed U.S. populations share a small set of bacteria whose members represent various common community states within U.S. adults. Cities were differentiated by their sewage bacterial communities, and the community structures were good predictors of a citys estimated level of obesity. Our approach demonstrates the use of sewage as a means to sample the fecal microbiota from millions of people and its potential to elucidate microbiome patterns associated with human demographics. The gut microbiota serves important functions in healthy humans. Numerous projects aim to define a healthy gut microbiome and its association with health states. However, financial considerations and privacy concerns limit the number of individuals who can be screened. By analyzing sewage from 71 cities, we demonstrate that geographically distributed U.S. populations share a small set of bacteria whose members represent various common community states within U.S. adults. Cities were differentiated by their sewage bacterial communities, and the community structures were good predictors of a citys estimated level of obesity. Our approach demonstrates the use of sewage as a means to sample the fecal microbiota from millions of people and its potential to elucidate microbiome patterns associated with human demographics.


Mbio | 2014

Comparison of brush and biopsy sampling methods of the ileal pouch for assessment of mucosa-associated microbiota of human subjects

Susan M. Huse; Vincent B. Young; Hilary G. Morrison; Dionysios A. Antonopoulos; John Y. Kwon; Sushila Dalal; Rose Arrieta; Nathaniel Hubert; Lici Shen; Joseph H. Vineis; Jason C. Koval; Mitchell L. Sogin; Eugene B. Chang; Laura E. Raffals

BackgroundMucosal biopsy is the most common sampling technique used to assess microbial communities associated with the intestinal mucosa. Biopsies disrupt the epithelium and can be associated with complications such as bleeding. Biopsies sample a limited area of the mucosa, which can lead to potential sampling bias. In contrast to the mucosal biopsy, the mucosal brush technique is less invasive and provides greater mucosal coverage, and if it can provide equivalent microbial community data, it would be preferable to mucosal biopsies.ResultsWe compared microbial samples collected from the intestinal mucosa using either a cytology brush or mucosal biopsy forceps. We collected paired samples from patients with ulcerative colitis (UC) who had previously undergone colectomy and ileal pouch anal anastomosis (IPAA), and profiled the microbial communities of the samples by sequencing V4-V6 or V4-V5 16S rRNA-encoding gene amplicons. Comparisons of 177 taxa in 16 brush-biopsy sample pairs had a mean R2 of 0.94. We found no taxa that varied significantly between the brush and biopsy samples after adjusting for multiple comparisons (false discovery rate ≤0.05). We also tested the reproducibility of DNA amplification and sequencing in 25 replicate pairs and found negligible variation (mean R2 = 0.99). A qPCR analysis of the two methods showed that the relative yields of bacterial DNA to human DNA were several-fold higher in the brush samples than in the biopsies.ConclusionsMucosal brushing is preferred to mucosal biopsy for sampling the epithelial-associated microbiota. Although both techniques provide similar assessments of the microbial community composition, the brush sampling method has relatively more bacterial to host DNA, covers a larger surface area, and is less traumatic to the epithelium than the mucosal biopsy.


Mbio | 2013

Multiphasic analysis of the temporal development of the distal gut microbiota in patients following ileal pouch anal anastomosis.

Vincent B. Young; Laura H. Raffals; Susan M. Huse; Marius Vital; Dongjuan Dai; Patrick D. Schloss; Dionysios A. Antonopoulos; Rose L Arrieta; John H. Kwon; K. Gautham Reddy; Nathaniel Hubert; Sharon L. Grim; Joseph H. Vineis; Sushila Dalal; Hilary G. Morrison; A. Murat Eren; Folker Meyer; Thomas M. Schmidt; James M. Tiedje; Eugene B. Chang; Mitchell L. Sogin

BackgroundThe indigenous gut microbiota are thought to play a crucial role in the development and maintenance of the abnormal inflammatory responses that are the hallmark of inflammatory bowel disease. Direct tests of the role of the gut microbiome in these disorders are typically limited by the fact that sampling of the microbiota generally occurs once disease has become manifest. This limitation could potentially be circumvented by studying patients who undergo total proctocolectomy with ileal pouch anal anastomosis (IPAA) for the definitive treatment of ulcerative colitis. A subset of patients who undergo IPAA develops an inflammatory condition known as pouchitis, which is thought to mirror the pathogenesis of ulcerative colitis. Following the development of the microbiome of the pouch would allow characterization of the microbial community that predates the development of overt disease.ResultsWe monitored the development of the pouch microbiota in four patients who underwent IPAA. Mucosal and luminal samples were obtained prior to takedown of the diverting ileostomy and compared to samples obtained 2, 4 and 8 weeks after intestinal continuity had been restored. Through the combined analysis of 16S rRNA-encoding gene amplicons, targeted 16S amplification and microbial cultivation, we observed major changes in structure and function of the pouch microbiota following ileostomy. There is a relative increase in anaerobic microorganisms with the capacity for fermentation of complex carbohydrates, which corresponds to the physical stasis of intestinal contents in the ileal pouch. Compared to the microbiome structure encountered in the colonic mucosa of healthy individuals, the pouch microbial community in three of the four individuals was quite distinct. In the fourth patient, a community that was much like that seen in a healthy colon was established, and this patient also had the most benign clinical course of the four patients, without the development of pouchitis 2 years after IPAA.ConclusionsThe microbiota that inhabit the ileal-anal pouch of patients who undergo IPAA for treatment of ulcerative colitis demonstrate significant structural and functional changes related to the restoration of fecal flow. Our preliminary results suggest once the pouch has assumed the physiologic role previously played by the intact colon, the precise structure and function of the pouch microbiome, relative to a normal colonic microbiota, will determine if there is establishment of a stable, healthy mucosal environment or the reinitiation of the pathogenic cascade that results in intestinal inflammation.


Applied and Environmental Microbiology | 2015

Comparison of Sewage and Animal Fecal Microbiomes by Using Oligotyping Reveals Potential Human Fecal Indicators in Multiple Taxonomic Groups

Jenny C. Fisher; A. Murat Eren; Hyatt C. Green; Orin C. Shanks; Hilary G. Morrison; Joseph H. Vineis; Mitchell L. Sogin; Sandra L. McLellan

ABSTRACT Most DNA-based microbial source tracking (MST) approaches target host-associated organisms within the order Bacteroidales, but the gut microbiota of humans and other animals contain organisms from an array of other taxonomic groups that might provide indicators of fecal pollution sources. To discern between human and nonhuman fecal sources, we compared the V6 regions of the 16S rRNA genes detected in fecal samples from six animal hosts to those found in sewage (as a proxy for humans). We focused on 10 abundant genera and used oligotyping, which can detect subtle differences between rRNA gene sequences from ecologically distinct organisms. Our analysis showed clear patterns of differential oligotype distributions between sewage and animal samples. Over 100 oligotypes of human origin occurred preferentially in sewage samples, and 99 human oligotypes were sewage specific. Sequences represented by the sewage-specific oligotypes can be used individually for development of PCR-based assays or together with the oligotypes preferentially associated with sewage to implement a signature-based approach. Analysis of sewage from Spain and Brazil showed that the sewage-specific oligotypes identified in U.S. sewage have the potential to be used as global alternative indicators of human fecal pollution. Environmental samples with evidence of prior human fecal contamination had consistent ratios of sewage signature oligotypes that corresponded to the trends observed for sewage. Our methodology represents a promising approach to identifying new bacterial taxa for MST applications and further highlights the potential of the family Lachnospiraceae to provide human-specific markers. In addition to source tracking applications, the patterns of the fine-scale population structure within fecal taxa suggest a fundamental relationship between bacteria and their hosts.


Mbio | 2016

Patient-Specific Bacteroides Genome Variants in Pouchitis

Joseph H. Vineis; Daina L. Ringus; Hilary G. Morrison; Tom O. Delmont; Sushila Dalal; Laura E. Raffals; Dionysios A. Antonopoulos; David T. Rubin; A. Murat Eren; Eugene B. Chang; Mitchell L. Sogin

ABSTRACT A 2-year longitudinal microbiome study of 22 patients who underwent colectomy with an ileal pouch anal anastomosis detected significant increases in distinct populations of Bacteroides during 9 of 11 patient visits that coincided with inflammation (pouchitis). Oligotyping and metagenomic short-read annotation identified Bacteroides populations that occurred in early samples, bloomed during inflammation, and reappeared after antibiotic treatment. Targeted cultivation of Bacteroides isolates from the same individual at multiple time points and from several patients detected subtle genomic changes, including the identification of rapidly evolving genomic elements that differentiate isogenic strains of Bacteroides fragilis from the mucosa versus lumen. Each patient harbored Bacteroides spp. that are closely related to commonly occurring clinical isolates, including Bacteroides ovatus, B. thetaiotaomicron, B. vulgatus, and B. fragilis, which contained unique loci in different patients for synthesis of capsular polysaccharides. The presence of unique Bacteroides capsular polysaccharide loci within different hosts and between the lumen and mucosa may represent adaptations to stimulate, suppress, and evade host-specific immune responses at different microsites of the ileal pouch. IMPORTANCE This longitudinal study provides an opportunity to describe shifts in the microbiomes of individual patients who suffer from ulcerative colitis (UC) prior to and following inflammation. Pouchitis serves as a model for UC with a predictable incidence of disease onset and enables prospective longitudinal investigations of UC etiology prior to inflammation. Because of insufficient criteria for predicting which patients will develop UC or pouchitis, the interpretation of cross-sectional study designs suffers from lack of information about the microbiome structure and host gene expression patterns that directly correlate with the onset of disease. Our unique longitudinal study design allows each patient to serve as their own control, providing information about the state of the microbiome and host prior to and during the course of disease. Of significance to the broader community, this study identifies microbial strains that may have genetic elements that trigger the onset of disease in susceptible hosts. This longitudinal study provides an opportunity to describe shifts in the microbiomes of individual patients who suffer from ulcerative colitis (UC) prior to and following inflammation. Pouchitis serves as a model for UC with a predictable incidence of disease onset and enables prospective longitudinal investigations of UC etiology prior to inflammation. Because of insufficient criteria for predicting which patients will develop UC or pouchitis, the interpretation of cross-sectional study designs suffers from lack of information about the microbiome structure and host gene expression patterns that directly correlate with the onset of disease. Our unique longitudinal study design allows each patient to serve as their own control, providing information about the state of the microbiome and host prior to and during the course of disease. Of significance to the broader community, this study identifies microbial strains that may have genetic elements that trigger the onset of disease in susceptible hosts.


Frontiers in Microbiology | 2015

Genome reconstructions indicate the partitioning of ecological functions inside a phytoplankton bloom in the Amundsen Sea, Antarctica

Tom O. Delmont; A. Murat Eren; Joseph H. Vineis; Anton F. Post

Antarctica polynyas support intense phytoplankton blooms, impacting their environment by a substantial depletion of inorganic carbon and nutrients. These blooms are dominated by the colony-forming haptophyte Phaeocystis antarctica and they are accompanied by a distinct bacterial population. Yet, the ecological role these bacteria may play in P. antarctica blooms awaits elucidation of their functional gene pool and of the geochemical activities they support. Here, we report on a metagenome (~160 million reads) analysis of the microbial community associated with a P. antarctica bloom event in the Amundsen Sea polynya (West Antarctica). Genomes of the most abundant Bacteroidetes and Proteobacteria populations have been reconstructed and a network analysis indicates a strong functional partitioning of these bacterial taxa. Three of them (SAR92, and members of the Oceanospirillaceae and Cryomorphaceae) are found in close association with P. antarctica colonies. Distinct features of their carbohydrate, nitrogen, sulfur and iron metabolisms may serve to support mutualistic relationships with P. antarctica. The SAR92 genome indicates a specialization in the degradation of fatty acids and dimethylsulfoniopropionate (compounds released by P. antarctica) into dimethyl sulfide, an aerosol precursor. The Oceanospirillaceae genome carries genes that may enhance algal physiology (cobalamin synthesis). Finally, the Cryomorphaceae genome is enriched in genes that function in cell or colony invasion. A novel pico-eukaryote, Micromonas related genome (19.6 Mb, ~94% completion) was also recovered. It contains the gene for an anti-freeze protein, which is lacking in Micromonas at lower latitudes. These draft genomes are representative for abundant microbial taxa across the Southern Ocean surface.

Collaboration


Dive into the Joseph H. Vineis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hilary G. Morrison

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mitchell L. Sogin

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandra L. McLellan

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jenny C. Fisher

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge