Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitchell L. Sogin is active.

Publication


Featured researches published by Mitchell L. Sogin.


Nature | 2009

A core gut microbiome in obese and lean twins

Peter J. Turnbaugh; Micah Hamady; Tanya Yatsunenko; Brandi L. Cantarel; Alexis E. Duncan; Ruth E. Ley; Mitchell L. Sogin; William J. Jones; Bruce A. Roe; Jason Affourtit; Michael Egholm; Bernard Henrissat; Andrew C. Heath; Rob Knight; Jeffrey I. Gordon

The human distal gut harbours a vast ensemble of microbes (the microbiota) that provide important metabolic capabilities, including the ability to extract energy from otherwise indigestible dietary polysaccharides. Studies of a few unrelated, healthy adults have revealed substantial diversity in their gut communities, as measured by sequencing 16S rRNA genes, yet how this diversity relates to function and to the rest of the genes in the collective genomes of the microbiota (the gut microbiome) remains obscure. Studies of lean and obese mice suggest that the gut microbiota affects energy balance by influencing the efficiency of calorie harvest from the diet, and how this harvested energy is used and stored. Here we characterize the faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers, to address how host genotype, environmental exposure and host adiposity influence the gut microbiome. Analysis of 154 individuals yielded 9,920 near full-length and 1,937,461 partial bacterial 16S rRNA sequences, plus 2.14 gigabases from their microbiomes. The results reveal that the human gut microbiome is shared among family members, but that each person’s gut microbial community varies in the specific bacterial lineages present, with a comparable degree of co-variation between adult monozygotic and dizygotic twin pairs. However, there was a wide array of shared microbial genes among sampled individuals, comprising an extensive, identifiable ‘core microbiome’ at the gene, rather than at the organismal lineage, level. Obesity is associated with phylum-level changes in the microbiota, reduced bacterial diversity and altered representation of bacterial genes and metabolic pathways. These results demonstrate that a diversity of organismal assemblages can nonetheless yield a core microbiome at a functional level, and that deviations from this core are associated with different physiological states (obese compared with lean).


Proceedings of the National Academy of Sciences of the United States of America | 2006

Microbial diversity in the deep sea and the underexplored “rare biosphere”

Mitchell L. Sogin; Hilary G. Morrison; Julie A. Huber; David B. Mark Welch; Susan M. Huse; Phillip R. Neal; Jesús M. Arrieta; Gerhard J. Herndl

The evolution of marine microbes over billions of years predicts that the composition of microbial communities should be much greater than the published estimates of a few thousand distinct kinds of microbes per liter of seawater. By adopting a massively parallel tag sequencing strategy, we show that bacterial communities of deep water masses of the North Atlantic and diffuse flow hydrothermal vents are one to two orders of magnitude more complex than previously reported for any microbial environment. A relatively small number of different populations dominate all samples, but thousands of low-abundance populations account for most of the observed phylogenetic diversity. This “rare biosphere” is very ancient and may represent a nearly inexhaustible source of genomic innovation. Members of the rare biosphere are highly divergent from each other and, at different times in earths history, may have had a profound impact on shaping planetary processes.


Infection and Immunity | 2009

Reproducible Community Dynamics of the Gastrointestinal Microbiota following Antibiotic Perturbation

Dionysios A. Antonopoulos; Susan M. Huse; Hilary G. Morrison; Thomas M. Schmidt; Mitchell L. Sogin; Vincent B. Young

ABSTRACT Shifts in microbial communities are implicated in the pathogenesis of a number of gastrointestinal diseases, but we have limited understanding of the mechanisms that lead to altered community structures. One difficulty with studying these mechanisms in human subjects is the inherent baseline variability of the microbiota in different individuals. In an effort to overcome this baseline variability, we employed a mouse model to control the host genotype, diet, and other possible influences on the microbiota. This allowed us to determine whether the indigenous microbiota in such mice had a stable baseline community structure and whether this community exhibited a consistent response following antibiotic administration. We employed a tag-sequencing strategy targeting the V6 hypervariable region of the bacterial small-subunit (16S) rRNA combined with massively parallel sequencing to determine the community structure of the gut microbiota. Inbred mice in a controlled environment harbored a reproducible baseline community that was significantly impacted by antibiotic administration. The ability of the gut microbial community to recover to baseline following the cessation of antibiotic administration differed according to the antibiotic regimen administered. Severe antibiotic pressure resulted in reproducible, long-lasting alterations in the gut microbial community, including a decrease in overall diversity. The finding of stereotypic responses of the indigenous microbiota to ecologic stress suggests that a better understanding of the factors that govern community structure could lead to strategies for the intentional manipulation of this ecosystem so as to preserve or restore a healthy microbiota.


PLOS Biology | 2008

The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing

Les Dethlefsen; Susan M. Huse; Mitchell L. Sogin; David A. Relman

The human intestinal microbiota is essential to the health of the host and plays a role in nutrition, development, metabolism, pathogen resistance, and regulation of immune responses. Antibiotics may disrupt these coevolved interactions, leading to acute or chronic disease in some individuals. Our understanding of antibiotic-associated disturbance of the microbiota has been limited by the poor sensitivity, inadequate resolution, and significant cost of current research methods. The use of pyrosequencing technology to generate large numbers of 16S rDNA sequence tags circumvents these limitations and has been shown to reveal previously unexplored aspects of the “rare biosphere.” We investigated the distal gut bacterial communities of three healthy humans before and after treatment with ciprofloxacin, obtaining more than 7,000 full-length rRNA sequences and over 900,000 pyrosequencing reads from two hypervariable regions of the rRNA gene. A companion paper in PLoS Genetics (see Huse et al., doi: 10.1371/journal.pgen.1000255) shows that the taxonomic information obtained with these methods is concordant. Pyrosequencing of the V6 and V3 variable regions identified 3,300–5,700 taxa that collectively accounted for over 99% of the variable region sequence tags that could be obtained from these samples. Ciprofloxacin treatment influenced the abundance of about a third of the bacterial taxa in the gut, decreasing the taxonomic richness, diversity, and evenness of the community. However, the magnitude of this effect varied among individuals, and some taxa showed interindividual variation in the response to ciprofloxacin. While differences of community composition between individuals were the largest source of variability between samples, we found that two unrelated individuals shared a surprising degree of community similarity. In all three individuals, the taxonomic composition of the community closely resembled its pretreatment state by 4 weeks after the end of treatment, but several taxa failed to recover within 6 months. These pervasive effects of ciprofloxacin on community composition contrast with the reports by participants of normal intestinal function and with prior assumptions of only modest effects of ciprofloxacin on the intestinal microbiota. These observations support the hypothesis of functional redundancy in the human gut microbiota. The rapid return to the pretreatment community composition is indicative of factors promoting community resilience, the nature of which deserves future investigation.


Genome Biology | 2007

Accuracy and quality of massively parallel DNA pyrosequencing

Susan M. Huse; Julie A. Huber; Hilary G. Morrison; Mitchell L. Sogin; David B. Mark Welch

BackgroundMassively parallel pyrosequencing systems have increased the efficiency of DNA sequencing, although the published per-base accuracy of a Roche GS20 is only 96%. In genome projects, highly redundant consensus assemblies can compensate for sequencing errors. In contrast, studies of microbial diversity that catalogue differences between PCR amplicons of ribosomal RNA genes (rDNA) or other conserved gene families cannot take advantage of consensus assemblies to detect and minimize incorrect base calls.ResultsWe performed an empirical study of the per-base error rate for the Roche GS20 system using sequences of the V6 hypervariable region from cloned microbial ribosomal DNA (tag sequencing). We calculated a 99.5% accuracy rate in unassembled sequences, and identified several factors that can be used to remove a small percentage of low-quality reads, improving the accuracy to 99.75% or better.ConclusionBy using objective criteria to eliminate low quality data, the quality of individual GS20 sequence reads in molecular ecological applications can surpass the accuracy of traditional capillary methods.


Environmental Microbiology | 2010

Ironing out the wrinkles in the rare biosphere through improved OTU clustering.

Susan M. Huse; David B. Mark Welch; Hilary G. Morrison; Mitchell L. Sogin

Deep sequencing of PCR amplicon libraries facilitates the detection of low-abundance populations in environmental DNA surveys of complex microbial communities. At the same time, deep sequencing can lead to overestimates of microbial diversity through the generation of low-frequency, error-prone reads. Even with sequencing error rates below 0.005 per nucleotide position, the common method of generating operational taxonomic units (OTUs) by multiple sequence alignment and complete-linkage clustering significantly increases the number of predicted OTUs and inflates richness estimates. We show that a 2% single-linkage preclustering methodology followed by an average-linkage clustering based on pairwise alignments more accurately predicts expected OTUs in both single and pooled template preparations of known taxonomic composition. This new clustering method can reduce the OTU richness in environmental samples by as much as 30–60% but does not reduce the fraction of OTUs in long-tailed rank abundance curves that defines the rare biosphere.


PLOS Genetics | 2008

Exploring Microbial Diversity and Taxonomy Using SSU rRNA Hypervariable Tag Sequencing

Susan M. Huse; Les Dethlefsen; Julie A. Huber; David B. Mark Welch; David A. Relman; Mitchell L. Sogin

Massively parallel pyrosequencing of hypervariable regions from small subunit ribosomal RNA (SSU rRNA) genes can sample a microbial community two or three orders of magnitude more deeply per dollar and per hour than capillary sequencing of full-length SSU rRNA. As with full-length rRNA surveys, each sequence read is a tag surrogate for a single microbe. However, rather than assigning taxonomy by creating gene trees de novo that include all experimental sequences and certain reference taxa, we compare the hypervariable region tags to an extensive database of rRNA sequences and assign taxonomy based on the best match in a Global Alignment for Sequence Taxonomy (GAST) process. The resulting taxonomic census provides information on both composition and diversity of the microbial community. To determine the effectiveness of using only hypervariable region tags for assessing microbial community membership, we compared the taxonomy assigned to the V3 and V6 hypervariable regions with the taxonomy assigned to full-length SSU rRNA sequences isolated from both the human gut and a deep-sea hydrothermal vent. The hypervariable region tags and full-length rRNA sequences provided equivalent taxonomy and measures of relative abundance of microbial communities, even for tags up to 15% divergent from their nearest reference match. The greater sampling depth per dollar afforded by massively parallel pyrosequencing reveals many more members of the “rare biosphere” than does capillary sequencing of the full-length gene. In addition, tag sequencing eliminates cloning bias and the sequences are short enough to be completely sequenced in a single read, maximizing the number of organisms sampled in a run while minimizing chimera formation. This technique allows the cost-effective exploration of changes in microbial community structure, including the rare biosphere, over space and time and can be applied immediately to initiatives, such as the Human Microbiome Project.


Science | 2007

Genomic Minimalism in the Early Diverging Intestinal Parasite Giardia lamblia

Hilary G. Morrison; Andrew G. McArthur; Frances D. Gillin; Stephen B. Aley; Rodney D. Adam; Gary J. Olsen; Aaron A. Best; W. Zacheus Cande; Feng Chen; Michael J. Cipriano; Barbara J. Davids; Scott C. Dawson; Heidi G. Elmendorf; Adrian B. Hehl; Michael E. Holder; Susan M. Huse; Ulandt Kim; Erica Lasek-Nesselquist; Gerard Manning; Anuranjini Nigam; Julie E. J. Nixon; Daniel Palm; Nora Q.E. Passamaneck; Anjali Prabhu; Claudia I. Reich; David S. Reiner; John Samuelson; Staffan G. Svärd; Mitchell L. Sogin

The genome of the eukaryotic protist Giardia lamblia, an important human intestinal parasite, is compact in structure and content, contains few introns or mitochondrial relics, and has simplified machinery for DNA replication, transcription, RNA processing, and most metabolic pathways. Protein kinases comprise the single largest protein class and reflect Giardias requirement for a complex signal transduction network for coordinating differentiation. Lateral gene transfer from bacterial and archaeal donors has shaped Giardias genome, and previously unknown gene families, for example, cysteine-rich structural proteins, have been discovered. Unexpectedly, the genome shows little evidence of heterozygosity, supporting recent speculations that this organism is sexual. This genome sequence will not only be valuable for investigating the evolution of eukaryotes, but will also be applied to the search for new therapeutics for this parasite.


Journal of Phycology | 1994

IDENTIFICATION OF GROUP‐ AND STRAIN‐SPECIFIC GENETIC MARKERS FOR GLOBALLY DISTRIBUTED ALEXANDRIUM (DINOPHYCEAE). II. SEQUENCE ANALYSIS OF A FRAGMENT OF THE LSU rRNA GENE1

Christopher A. Scholin; Michel Herzog; Mitchell L. Sogin; Donald M. Anderson

A fragment of the large‐subunit (LSU) ribosomal RNA gene (rDNA) from the marine dinoflagellates Alexandrium tamarense (Lebour) Balech, A. catenella (Whedon et Kofoid) Balech, A. fundyense Balech, A. affine (Fukuyo et Inoue) Balech, A. minutum Halim, A. lusitanicum Balech, and A. andersoni Balech was cloned and sequenced to assess inter‐ and intraspecific relationships. Cultures examined were from North America, western Europe, Thailand, Japan, Australia, and the ballast water of several cargo vessels and included both toxic and nontoxic isolates. Parsimony analyses revealed eight major classes of sequences, or “ribotypes,” indicative of both species‐ and strain‐specific genetic markers. Five ribotypes subdivided members of the A. tamarense/catenella/ fundyense species cluster (the “tamarensis complex”) but did not correlate with morphospecies designations. The three remaining ribotypes were associated with cultures that clearly differ morphologically from the tamarensis complex. These distinct sequences were typified by 1) A. affine, 2) A. minutum and A. lusitanicum, and 3) A. andersoni. LSU rDNA from A. minutum and A. lusitanicum was indistinguishable. An isolates ability to produce toxin, or lack thereof, was consistent within phylogenetic terminal taxa. Results of this study are in complete agreement with conclusions from previous work using restriction fragment‐length polymorphism analysis of small subunit rRNA genes, but the LSU rDNA sequences provided finer‐scale species and population resolution.


Applied and Environmental Microbiology | 2002

Microbial Diversity of Hydrothermal Sediments in the Guaymas Basin: Evidence for Anaerobic Methanotrophic Communities

Andreas Teske; Kai-Uwe Hinrichs; Virginia P. Edgcomb; Alvin de Vera Gomez; David T. Kysela; Sean P. Sylva; Mitchell L. Sogin; Holger W. Jannasch

ABSTRACT Microbial communities in hydrothermally active sediments of the Guaymas Basin (Gulf of California, Mexico) were studied by using 16S rRNA sequencing and carbon isotopic analysis of archaeal and bacterial lipids. The Guaymas sediments harbored uncultured euryarchaeota of two distinct phylogenetic lineages within the anaerobic methane oxidation 1 (ANME-1) group, ANME-1a and ANME-1b, and of the ANME-2c lineage within the Methanosarcinales, both previously assigned to the methanotrophic archaea. The archaeal lipids in the Guaymas Basin sediments included archaeol, diagnostic for nonthermophilic euryarchaeota, and sn-2-hydroxyarchaeol, with the latter compound being particularly abundant in cultured members of the Methanosarcinales. The concentrations of these compounds were among the highest observed so far in studies of methane seep environments. The δ-13C values of these lipids (δ-13C = −89 to −58‰) indicate an origin from anaerobic methanotrophic archaea. This molecular-isotopic signature was found not only in samples that yielded predominantly ANME-2 clones but also in samples that yielded exclusively ANME-1 clones. ANME-1 archaea therefore remain strong candidates for mediation of the anaerobic oxidation of methane. Based on 16S rRNA data, the Guaymas sediments harbor phylogenetically diverse bacterial populations, which show considerable overlap with bacterial populations of geothermal habitats and natural or anthropogenic hydrocarbon-rich sites. Consistent with earlier observations, our combined evidence from bacterial phylogeny and molecular-isotopic data indicates an important role of some novel deeply branching bacteria in anaerobic methanotrophy. Anaerobic methane oxidation likely represents a significant and widely occurring process in the trophic ecology of methane-rich hydrothermal vents. This study stresses a high diversity among communities capable of anaerobic oxidation of methane.

Collaboration


Dive into the Mitchell L. Sogin's collaboration.

Top Co-Authors

Avatar

Hilary G. Morrison

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David B. Mark Welch

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sandra L. McLellan

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie A. Huber

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Virginia P. Edgcomb

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Detlef D. Leipe

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shawn K. Stickel

Marine Biological Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge