Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph J. Buggy is active.

Publication


Featured researches published by Joseph J. Buggy.


The New England Journal of Medicine | 2013

Targeting BTK with Ibrutinib in Relapsed Chronic Lymphocytic Leukemia

John C. Byrd; Richard R. Furman; Steven Coutre; Ian W. Flinn; Jan A. Burger; Kristie A. Blum; Barbara Grant; Jeff Porter Sharman; Morton Coleman; William G. Wierda; Jeffrey A. Jones; Weiqiang Zhao; Nyla A. Heerema; Amy J. Johnson; Juthamas Sukbuntherng; Betty Y. Chang; Fong Clow; Eric Hedrick; Joseph J. Buggy; Danelle F. James; Susan O'Brien

BACKGROUNDnThe treatment of relapsed chronic lymphocytic leukemia (CLL) has resulted in few durable remissions. Brutons tyrosine kinase (BTK), an essential component of B-cell-receptor signaling, mediates interactions with the tumor microenvironment and promotes the survival and proliferation of CLL cells.nnnMETHODSnWe conducted a phase 1b-2 multicenter study to assess the safety, efficacy, pharmacokinetics, and pharmacodynamics of ibrutinib (PCI-32765), a first-in-class, oral covalent inhibitor of BTK designed for treatment of B-cell cancers, in patients with relapsed or refractory CLL or small lymphocytic lymphoma. A total of 85 patients, the majority of whom were considered to have high-risk disease, received ibrutinib orally once daily; 51 received 420 mg, and 34 received 840 mg.nnnRESULTSnToxic effects were predominantly grade 1 or 2 and included transient diarrhea, fatigue, and upper respiratory tract infection; thus, patients could receive extended treatment with minimal hematologic toxic effects. The overall response rate was the same in the group that received 420 mg and the group that received 840 mg (71%), and an additional 20% and 15% of patients in the respective groups had a partial response with lymphocytosis. The response was independent of clinical and genomic risk factors present before treatment, including advanced-stage disease, the number of previous therapies, and the 17p13.1 deletion. At 26 months, the estimated progression-free survival rate was 75% and the rate of overall survival was 83%.nnnCONCLUSIONSnIbrutinib was associated with a high frequency of durable remissions in patients with relapsed or refractory CLL and small lymphocytic lymphoma, including patients with high-risk genetic lesions. (Funded by Pharmacyclics and others; ClinicalTrials.gov number, NCT01105247.).


Proceedings of the National Academy of Sciences of the United States of America | 2010

The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy

Lee Honigberg; Ashley Smith; Mint Sirisawad; Erik Verner; David Loury; Betty Y. Chang; Shyr Li; Zhengying Pan; Douglas H. Thamm; Richard A. Miller; Joseph J. Buggy

Activation of the B-cell antigen receptor (BCR) signaling pathway contributes to the initiation and maintenance of B-cell malignancies and autoimmune diseases. The Bruton tyrosine kinase (Btk) is specifically required for BCR signaling as demonstrated by human and mouse mutations that disrupt Btk function and prevent B-cell maturation at steps that require a functional BCR pathway. Herein we describe a selective and irreversible Btk inhibitor, PCI-32765, that is currently under clinical development in patients with B-cell non-Hodgkin lymphoma. We have used this inhibitor to investigate the biologic effects of Btk inhibition on mature B-cell function and the progression of B cell-associated diseases in vivo. PCI-32765 blocked BCR signaling in human peripheral B cells at concentrations that did not affect T cell receptor signaling. In mice with collagen-induced arthritis, orally administered PCI-32765 reduced the level of circulating autoantibodies and completely suppressed disease. PCI-32765 also inhibited autoantibody production and the development of kidney disease in the MRL-Fas(lpr) lupus model. Occupancy of the Btk active site by PCI-32765 was monitored in vitro and in vivo using a fluorescent affinity probe for Btk. Active site occupancy of Btk was tightly correlated with the blockade of BCR signaling and in vivo efficacy. Finally, PCI-32765 induced objective clinical responses in dogs with spontaneous B-cell non-Hodgkin lymphoma. These findings support Btk inhibition as a therapeutic approach for the treatment of human diseases associated with activation of the BCR pathway.


The New England Journal of Medicine | 2013

Targeting BTK with Ibrutinib in Relapsed or Refractory Mantle-Cell Lymphoma

Michael C. Wang; Simon Rule; Peter Martin; Andre Goy; Rebecca Auer; Brad S. Kahl; Wojciech Jurczak; Ranjana H. Advani; Jorge Romaguera; Michael E. Williams; Jacqueline C. Barrientos; Ewa Chmielowska; John Radford; Stephan Stilgenbauer; M. Dreyling; Wiesław Wiktor Jędrzejczak; Peter E. Johnson; Stephen E. Spurgeon; Lei Li; Liang Zhang; Kate J. Newberry; Zhishuo Ou; Nancy Cheng; Bingliang Fang; Jesse McGreivy; Fong Clow; Joseph J. Buggy; Betty Y. Chang; Darrin M. Beaupre; Lori Kunkel

BACKGROUNDnBrutons tyrosine kinase (BTK) is a mediator of the B-cell-receptor signaling pathway implicated in the pathogenesis of B-cell cancers. In a phase 1 study, ibrutinib, a BTK inhibitor, showed antitumor activity in several types of non-Hodgkins lymphoma, including mantle-cell lymphoma.nnnMETHODSnIn this phase 2 study, we investigated oral ibrutinib, at a daily dose of 560 mg, in 111 patients with relapsed or refractory mantle-cell lymphoma. Patients were enrolled into two groups: those who had previously received at least 2 cycles of bortezomib therapy and those who had received less than 2 complete cycles of bortezomib or had received no prior bortezomib therapy. The primary end point was the overall response rate. Secondary end points were duration of response, progression-free survival, overall survival, and safety.nnnRESULTSnThe median age was 68 years, and 86% of patients had intermediate-risk or high-risk mantle-cell lymphoma according to clinical prognostic factors. Patients had received a median of three prior therapies. The most common treatment-related adverse events were mild or moderate diarrhea, fatigue, and nausea. Grade 3 or higher hematologic events were infrequent and included neutropenia (in 16% of patients), thrombocytopenia (in 11%), and anemia (in 10%). A response rate of 68% (75 patients) was observed, with a complete response rate of 21% and a partial response rate of 47%; prior treatment with bortezomib had no effect on the response rate. With an estimated median follow-up of 15.3 months, the estimated median response duration was 17.5 months (95% confidence interval [CI], 15.8 to not reached), the estimated median progression-free survival was 13.9 months (95% CI, 7.0 to not reached), and the median overall survival was not reached. The estimated rate of overall survival was 58% at 18 months.nnnCONCLUSIONSnIbrutinib shows durable single-agent efficacy in relapsed or refractory mantle-cell lymphoma. (Funded by Pharmacyclics and others; ClinicalTrials.gov number, NCT01236391.)


The New England Journal of Medicine | 2014

Resistance Mechanisms for the Bruton's Tyrosine Kinase Inhibitor Ibrutinib

Jennifer A. Woyach; Richard R. Furman; Ta Ming Liu; Hatice Gulcin Ozer; Marc Zapatka; Amy S. Ruppert; Ling Xue; Daniel Hsieh Hsin Li; Susanne Steggerda; Matthias Versele; Sandeep S. Dave; Jenny Zhang; Ayse Selen Yilmaz; Samantha Jaglowski; Kristie A. Blum; Arletta Lozanski; Gerard Lozanski; Danelle F. James; Jacqueline C. Barrientos; Peter Lichter; Stephan Stilgenbauer; Joseph J. Buggy; Betty Y. Chang; Amy J. Johnson; John C. Byrd

BACKGROUNDnIbrutinib is an irreversible inhibitor of Brutons tyrosine kinase (BTK) and is effective in chronic lymphocytic leukemia (CLL). Resistance to irreversible kinase inhibitors and resistance associated with BTK inhibition have not been characterized. Although only a small proportion of patients have had a relapse during ibrutinib therapy, an understanding of resistance mechanisms is important. We evaluated patients with relapsed disease to identify mutations that may mediate ibrutinib resistance.nnnMETHODSnWe performed whole-exome sequencing at baseline and the time of relapse on samples from six patients with acquired resistance to ibrutinib therapy. We then performed functional analysis of identified mutations. In addition, we performed Ion Torrent sequencing for identified resistance mutations on samples from nine patients with prolonged lymphocytosis.nnnRESULTSnWe identified a cysteine-to-serine mutation in BTK at the binding site of ibrutinib in five patients and identified three distinct mutations in PLCγ2 in two patients. Functional analysis showed that the C481S mutation of BTK results in a protein that is only reversibly inhibited by ibrutinib. The R665W and L845F mutations in PLCγ2 are both potentially gain-of-function mutations that lead to autonomous B-cell-receptor activity. These mutations were not found in any of the patients with prolonged lymphocytosis who were taking ibrutinib.nnnCONCLUSIONSnResistance to the irreversible BTK inhibitor ibrutinib often involves mutation of a cysteine residue where ibrutinib binding occurs. This finding, combined with two additional mutations in PLCγ2 that are immediately downstream of BTK, underscores the importance of the B-cell-receptor pathway in the mechanism of action of ibrutinib in CLL. (Funded by the National Cancer Institute and others.).


Lancet Oncology | 2014

Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial

Susan O'Brien; Richard R. Furman; Steven Coutre; Jeff P. Sharman; Jan A. Burger; Kristie A. Blum; Barbara Grant; Donald A. Richards; Morton Coleman; William G. Wierda; Jeffrey A. Jones; Weiqiang Zhao; Nyla A. Heerema; Amy J. Johnson; Raquel Izumi; Ahmed Hamdy; Betty Y. Chang; Thorsten Graef; Fong Clow; Joseph J. Buggy; Danelle F. James; John C. Byrd

BACKGROUNDnChemoimmunotherapy has led to improved numbers of patients achieving disease response, and longer overall survival in young patients with chronic lymphocytic leukaemia; however, its application in elderly patients has been restricted by substantial myelosuppression and infection. We aimed to assess safety and activity of ibrutinib, an orally administered covalent inhibitor of Bruton tyrosine kinase (BTK), in treatment-naive patients aged 65 years and older with chronic lymphocytic leukaemia.nnnMETHODSnIn our open-label phase 1b/2 trial, we enrolled previously untreated patients at clinical sites in the USA. Eligible patients were aged at least 65 years, and had symptomatic chronic lymphocytic leukaemia or small lymphocytic lymphoma requiring therapy. Patients received 28 day cycles of once-daily ibrutinib 420 mg or ibrutinib 840 mg. The 840 mg dose was discontinued after enrolment had begun because comparable activity of the doses has been shown. The primary endpoint was the safety of the dose-fixed regimen in terms of frequency and severity of adverse events for all patients who received treatment. This study is registered with ClinicalTrials.gov, number NCT01105247.nnnFINDINGSnBetween May 20, 2010, and Dec 18, 2012, we enrolled 29 patients with chronic lymphocytic leukaemia and two patients with small lymphocytic lymphoma. Median age was 71 years (range 65-84), and 23 (74%) patients were at least 70 years old. Toxicity was mainly of mild-to-moderate severity (grade 1-2). 21 (68%) patients had diarrhoea (grade 1 in 14 [45%] patients, grade 2 in three [10%] patients, and grade 3 in four [13%] patients). 15 (48%) patients developed nausea (grade 1 in 12 [39%] patients and grade 2 in three [10%] patients). Ten (32%) patients developed fatigue (grade 1 in five [16%] patients, grade 2 in four [13%] patients, and grade 3 in one [3%] patient). Three (10%) patients developed grade 3 infections, although no grade 4 or 5 infections occurred. One patient developed grade 3 neutropenia, and one developed grade 4 thrombocytopenia. After a median follow-up of 22.1 months (IQR 18.4-23.2), 22 (71%) of 31 patients achieved an objective response (95% CI 52.0-85.8); four patients (13%) had a complete response, one patient (3%) had a nodular partial response, and 17 (55%) patients had a partial response.nnnINTERPRETATIONnThe safety and activity of ibrutinib in elderly, previously untreated patients with symptomatic chronic lymphocytic leukaemia, or small lymphocytic lymphoma is encouraging, and merits further investigation in phase 3 trials.nnnFUNDINGnPharmacyclics, Leukemia and Lymphoma Society, D Warren Brown Foundation, Mr and Mrs Michael Thomas, Harry Mangurian Foundation, P50 CA140158 to Prof J C Byrd MD.


Blood | 2013

Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes

Jason A. Dubovsky; Kyle A. Beckwith; Gayathri Natarajan; Jennifer A. Woyach; Samantha Jaglowski; Yiming Zhong; Joshua Hessler; Ta-Ming Liu; Betty Y. Chang; Karilyn Larkin; Matthew R. Stefanovski; Danielle L. Chappell; Frank Frissora; Lisa L. Smith; Kelly A. Smucker; Joseph M. Flynn; Jeffrey A. Jones; Leslie A. Andritsos; Kami Maddocks; Amy Lehman; Richard R. Furman; Jeff P. Sharman; Anjali Mishra; Michael A. Caligiuri; Abhay R. Satoskar; Joseph J. Buggy; Natarajan Muthusamy; Amy J. Johnson; John C. Byrd

Given its critical role in T-cell signaling, interleukin-2-inducible kinase (ITK) is an appealing therapeutic target that can contribute to the pathogenesis of certain infectious, autoimmune, and neoplastic diseases. Ablation of ITK subverts Th2 immunity, thereby potentiating Th1-based immune responses. While small-molecule ITK inhibitors have been identified, none have demonstrated clinical utility. Ibrutinib is a confirmed irreversible inhibitor of Bruton tyrosine kinase (BTK) with outstanding clinical activity and tolerability in B-cell malignancies. Significant homology between BTK and ITK alongside in silico docking studies support ibrutinib as an immunomodulatory inhibitor of both ITK and BTK. Our comprehensive molecular and phenotypic analysis confirms ITK as an irreversible T-cell target of ibrutinib. Using ibrutinib clinical trial samples along with well-characterized neoplastic (chronic lymphocytic leukemia), parasitic infection (Leishmania major), and infectious disease (Listeria monocytogenes) models, we establish ibrutinib as a clinically relevant and physiologically potent ITK inhibitor with broad therapeutic utility. This trial was registered at www.clinicaltrials.gov as #NCT01105247 and #NCT01217749.


Cancer Cell | 2012

Exploiting Synthetic Lethality for the Therapy of ABC Diffuse Large B Cell Lymphoma

Yibin Yang; Arthur L. Shaffer; N. C. Tolga Emre; Michele Ceribelli; Meili Zhang; George E. Wright; Wenming Xiao; John Powell; John Platig; Holger Kohlhammer; Ryan M. Young; Hong Zhao; Yandan Yang; Weihong Xu; Joseph J. Buggy; Sriram Balasubramanian; Lesley A. Mathews; Paul Shinn; Rajarshi Guha; Marc Ferrer; Craig J. Thomas; Thomas A. Waldmann; Louis M. Staudt

Knowledge of oncogenic mutations can inspire therapeutic strategies that are synthetically lethal, affecting cancer cells while sparing normal cells. Lenalidomide is an active agent in the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), but its mechanism of action is unknown. Lenalidomide kills ABC DLBCL cells by augmenting interferon β (IFNβ) production, owing to the oncogenic MYD88 mutations in these lymphomas. In a cereblon-dependent fashion, lenalidomide downregulates IRF4 and SPIB, transcription factors that together prevent IFNβ production by repressing IRF7 and amplify prosurvival NF-κB signaling by transactivating CARD11. Blockade of B cell receptor signaling using the BTK inhibitor ibrutinib also downregulates IRF4 and consequently synergizes with lenalidomide in killing ABC DLBCLs, suggesting attractive therapeutic strategies.


Proceedings of the National Academy of Sciences of the United States of America | 2007

HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination

Shanthi Adimoolam; Mint Sirisawad; Jun Chen; Patti Thiemann; James M. Ford; Joseph J. Buggy

Histone deacetylase (HDAC) inhibitors such as the phenyl hydroxamic acid PCI-24781 have emerged recently as a class of therapeutic agents for the treatment of cancer. Recent data showing synergy of HDAC inhibitors with ionizing radiation and other DNA-damaging agents have suggested that HDAC inhibitors may act, in part, by inhibiting DNA repair. Here we present evidence that HDAC enzymes are important for homologous recombinational repair of DNA double-strand breaks. Combination studies of PCI-24781 with the poly(ADP-ribose) polymerase inhibitor PJ34, an agent thought to produce lesions repaired by homologous recombination (HR), resulted in a synergistic effect on apoptosis. Immunofluorescence analysis demonstrated that HDAC inhibition caused a complete inhibition of subnuclear repair foci in response to ionizing radiation. Mechanistic investigations revealed that inhibition of HDAC enzymes by PCI-24781 led to a significant reduction in the transcription of genes specifically associated with HR, including RAD51. RAD51 protein levels were significantly decreased after 24 h of drug exposure both in vitro and in vivo. Consistent with inhibition of HR, treatment with PCI-24781 resulted in a decreased ability to perform homology directed repair of I-SceI-induced chromosome breaks in transfected CHO cells. In addition, an enhancement of cell killing was observed in Ku mutant cells lacking functional nonhomologous end joining compared with WT cells. Together these results demonstrate that HDAC enzymes are critically important to enable functional HR by controlling the expression of HR-related genes and promoting the proper assembly of HR-directed subnuclear foci.


Cancer Letters | 2009

Isoform-specific histone deacetylase inhibitors: The next step?

Sriram Balasubramanian; Erik Verner; Joseph J. Buggy

Histone deacetylases (HDACs) have emerged as attractive drug targets, particularly for neoplastic indications. This large family is divided into four classes, of which three consist of zinc-dependent enzymes, and inhibitors of these are the subject of this review. Currently, there are several inhibitors advancing through clinical trials, all of which inhibit multiple isoforms of these three classes. While promising, these compounds have exhibited toxicities in the clinic that might limit their potential, particularly in solid tumors. It may be possible to reduce some of the toxicity by specifically targeting only the isoform(s) involved in maintaining that particular tumor and spare other isoforms that are uninvolved or even beneficial. This review examines the selectivity and toxicity of HDAC inhibitors currently in clinic, comparing pan-HDAC inhibitors to Class I selective compounds. The rationale for isoform-specific inhibitors is examined. The current status of isoform-specific inhibitor development is analyzed, especially inhibitors of HDAC1, 2, 4 and 8 enzymes, and the potential clinical utility of these compounds is discussed.


Arthritis Research & Therapy | 2011

The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells

Betty Y. Chang; Min Mei Huang; Michelle Francesco; Jun Chen; Jeremy Sokolove; Padmaja Magadala; William H. Robinson; Joseph J. Buggy

IntroductionThe aim was to determine the effect of the Bruton tyrosine kinase (Btk)-selective inhibitor PCI-32765, currently in Phase I/II studies in lymphoma trials, in arthritis and immune-complex (IC) based animal models and describe the underlying cellular mechanisms.MethodsPCI-32765 was administered in a series of murine IC disease models including collagen-induced arthritis (CIA), collagen antibody-induced arthritis (CAIA), reversed passive anaphylactic reaction (RPA), and passive cutaneous anaphylaxis (PCA). Clinical and pathologic features characteristic of each model were examined following treatment. PCI-32765 was then examined in assays using immune cells relevant to the pathogenesis of arthritis, and where Btk is thought to play a functional role. These included proliferation and calcium mobilization in B cells, cytokine and chemokine production in monocytes/macrophages, degranulation of mast cells and its subsequent cytokine/chemokine production.ResultsPCI-32765 dose-dependently and potently reversed arthritic inflammation in a therapeutic CIA model with an ED50 of 2.6 mg/kg/day. PCI-32765 also prevented clinical arthritis in CAIA models. In both models, infiltration of monocytes and macrophages into the synovium was completely inhibited and importantly, the bone and cartilage integrity of the joints were preserved. PCI-32765 reduced inflammation in the Arthus and PCA assays. In vitro, PCI-32765 inhibited BCR-activated primary B cell proliferation (IC50 = 8 nM). Following FcγR stimulation, PCI-32765 inhibited TNFα, IL-1β and IL-6 production in primary monocytes (IC50 = 2.6, 0.5, 3.9 nM, respectively). Following FcεRI stimulation of cultured human mast cells, PCI-32765 inhibited release of histamine, PGD2, TNF-α, IL-8 and MCP-1.ConclusionsPCI-32765 is efficacious in CIA, and in IC models that do not depend upon autoantibody production from B cells. Thus PCI-32765 targets not only B lymphocytes but also monocytes, macrophages and mast cells, which are important Btk-expressing effector cells in arthritis.

Collaboration


Dive into the Joseph J. Buggy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mint Sirisawad

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge