Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shanthi Adimoolam is active.

Publication


Featured researches published by Shanthi Adimoolam.


Circulation | 1999

Novel Mechanism for Endothelial Dysfunction Dysregulation of Dimethylarginine Dimethylaminohydrolase

Akira Ito; Philip S. Tsao; Shanthi Adimoolam; Masumi Kimoto; Tadashi Ogawa; John P. Cooke

BACKGROUND Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase (NOS). Plasma levels of ADMA are elevated in individuals with hypercholesterolemia or atherosclerosis. We postulated that reduced degradation of ADMA may play a role in the accumulation of ADMA in these individuals. Accordingly, we studied the effects of oxidized LDL (oxLDL) or tumor necrosis factor-alpha (TNF-alpha) on the accumulation of ADMA by transformed human umbilical vein endothelial cells (ECV304) and on the enzyme dimethylarginine dimethylaminohydrolase (DDAH), which degrades ADMA. METHODS AND RESULTS ECV304 were incubated with or without native LDL (100 micrograms/mL), oxLDL (100 micrograms/mL), or TNF-alpha (250 U/mL) for 48 hours. The concentration of ADMA in the conditioned medium was determined by high-performance liquid chromatography. Western blotting was performed to evaluate DDAH expression. We assayed DDAH activity by determining L-citrulline formation from ADMA. The addition of oxLDL or TNF-alpha to ECV304 significantly increased the level of ADMA in the conditioned medium. The effect of oxLDL or TNF-alpha was not due to a change in DDAH expression but rather to the reduction of DDAH activity. To determine whether dysregulation of DDAH also occurred in vivo, New Zealand White rabbits were fed normal chow or a high-cholesterol diet. Hypercholesterolemia significantly reduced aortic, renal, and hepatic DDAH activity. CONCLUSIONS These results suggest that the endothelial vasodilator dysfunction observed in hypercholesterolemia may be due to reduced degradation of ADMA, the endogenous inhibitor of NOS.


Circulation | 2002

Impaired nitric oxide synthase pathway in diabetes mellitus: Role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase

Ken Y. Lin; Akira Ito; Tomoko Asagami; Philip S. Tsao; Shanthi Adimoolam; Masumi Kimoto; Hideaki Tsuji; Gerald M. Reaven; John P. Cooke

Background—An endogenous inhibitor of nitric oxide synthase, asymmetric dimethylarginine (ADMA), is elevated in patients with type 2 diabetes mellitus (DM). This study explored the mechanisms by which ADMA becomes elevated in DM. Methods and Results—Male Sprague-Dawley rats were fed normal chow or high-fat diet (n=5 in each) with moderate streptozotocin injection to induce type 2 DM. Plasma ADMA was elevated in diabetic rats (1.33±0.31 versus 0.48±0.08 &mgr;mol/L;P <0.05). The activity, but not the expression, of dimethylarginine dimethylaminohydrolase (DDAH) was reduced in diabetic rats and negatively correlated with their plasma ADMA levels (P <0.05). DDAH activity was significantly reduced in vascular smooth muscle cells and human endothelial cells (HMEC-1) exposed to high glucose (25.5 mmol/L). The impairment of DDAH activity in vascular cells was associated with an accumulation of ADMA and a reduction in generation of cGMP. In human endothelial cells, coincubation with the antioxidant polyethylene glycol–conjugated superoxide dismutase (22 U/mL) reversed the effects of the high-glucose condition on DDAH activity, ADMA accumulation, and cGMP synthesis. Conclusions—A glucose-induced impairment of DDAH causes ADMA accumulation and may contribute to endothelial vasodilator dysfunction in DM.


Circulation | 2003

Dimethylarginine Dimethylaminohydrolase Regulates Nitric Oxide Synthesis: Genetic and Physiological Evidence

Hayan Dayoub; Vinod Achan; Shanthi Adimoolam; Johannes Jacobi; Marcus C. Stuehlinger; Bing Yin Wang; Philip S. Tsao; Masumi Kimoto; Patrick Vallance; Andrew J. Patterson; John P. Cooke

Background—NO is a major regulator of cardiovascular physiology that reduces vascular and cardiac contractility. Accumulating evidence indicates that endogenous inhibitors may regulate NOS. The NOS inhibitors asymmetric dimethylarginine (ADMA) and N-monomethylarginine are metabolized by the enzyme dimethylarginine dimethylaminohydrolase (DDAH). This study was designed to determine if increased expression of DDAH could reduce tissue and plasma levels of the NOS inhibitors and thereby increase NO synthesis. Methods and Results—We used gene transfer and transgenic approaches to overexpress human DDAH I in vitro and in vivo. The overexpression of DDAH in cultured endothelial cells in vitro induced a 2-fold increase in NOS activity and NO production. In the hDDAH-1 transgenic mice, we observed ≈2-fold increases in tissue NOS activity and urinary nitrogen oxides, associated with a 2-fold reduction in plasma ADMA. The systolic blood pressure of transgenic mice was 13 mm Hg lower than that of wild-type controls (P <0.05). The systemic vascular resistance and cardiac contractility were decreased in response to the increase in NO production. Conclusions—DDAH I overexpression increases NOS activity in vitro and in vivo. The hDDAH-1 transgenic animal exhibits a reduced systolic blood pressure, systemic vascular resistance, and cardiac stroke volume. This study provides compelling evidence that the elaboration and metabolism of endogenous ADMA plays an important role in regulation of NOS activity.


Proceedings of the National Academy of Sciences of the United States of America | 2002

p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene

Shanthi Adimoolam; James M. Ford

The p53 tumor suppressor gene product is a transcription factor involved in cell-cycle regulation, apoptosis, and DNA repair. We and others have shown that p53 is required for efficient nucleotide excision repair (NER) of UV-induced DNA lesions. p53-deficient cells are defective in the repair of UV photoproducts in genomic DNA but proficient for transcription-coupled repair. Therefore, we examined whether p53 regulates the expression of genes required for global genomic repair. In this study, we demonstrate that the mRNA and protein products of the xeroderma pigmentosum group C (XPC) gene are UV-inducible in a time- and dose-dependent manner in human WI38 fibroblasts and HCT116 colorectal cancer cells wild type for p53. However, no significant induction of XPC was observed in p53-deficient counterparts to these cells. Furthermore, regulated expression of wild-type p53 in p53 null Li–Fraumeni syndrome human fibroblasts significantly augmented the expression of XPC protein. Analysis of the human XPC gene sequence revealed a putative p53 response element in the XPC promoter that was capable of mediating sequence-specific DNA binding to p53 in vitro. These results provide strong evidence that the NER gene XPC is a DNA damage-inducible and p53-regulated gene and likely plays a role in the p53-dependent NER pathway.


Proceedings of the National Academy of Sciences of the United States of America | 2007

HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination

Shanthi Adimoolam; Mint Sirisawad; Jun Chen; Patti Thiemann; James M. Ford; Joseph J. Buggy

Histone deacetylase (HDAC) inhibitors such as the phenyl hydroxamic acid PCI-24781 have emerged recently as a class of therapeutic agents for the treatment of cancer. Recent data showing synergy of HDAC inhibitors with ionizing radiation and other DNA-damaging agents have suggested that HDAC inhibitors may act, in part, by inhibiting DNA repair. Here we present evidence that HDAC enzymes are important for homologous recombinational repair of DNA double-strand breaks. Combination studies of PCI-24781 with the poly(ADP-ribose) polymerase inhibitor PJ34, an agent thought to produce lesions repaired by homologous recombination (HR), resulted in a synergistic effect on apoptosis. Immunofluorescence analysis demonstrated that HDAC inhibition caused a complete inhibition of subnuclear repair foci in response to ionizing radiation. Mechanistic investigations revealed that inhibition of HDAC enzymes by PCI-24781 led to a significant reduction in the transcription of genes specifically associated with HR, including RAD51. RAD51 protein levels were significantly decreased after 24 h of drug exposure both in vitro and in vivo. Consistent with inhibition of HR, treatment with PCI-24781 resulted in a decreased ability to perform homology directed repair of I-SceI-induced chromosome breaks in transfected CHO cells. In addition, an enhancement of cell killing was observed in Ku mutant cells lacking functional nonhomologous end joining compared with WT cells. Together these results demonstrate that HDAC enzymes are critically important to enable functional HR by controlling the expression of HR-related genes and promoting the proper assembly of HR-directed subnuclear foci.


DNA Repair | 2003

p53 and regulation of DNA damage recognition during nucleotide excision repair.

Shanthi Adimoolam; James M. Ford

In response to a variety of types of DNA damage, the p53 tumor suppressor gene product is activated and regulates a number of downstream cellular processes such as cell cycle arrest, apoptosis and DNA repair. Recent discoveries concerning the regulation of DNA repair processes by p53, such as nucleotide excision repair (NER) and base excision repair (BER) have paved the way for studies to understand the mechanisms governing p53-dependent DNA repair. Although several theories have been proposed, accumulating evidence points to a transcriptional regulatory role for p53 in NER, mediating expression of the global genomic repair (GGR)-specific damage recognition genes, DDB2 and XPC. In BER, a more direct role for p53 has been proposed, potentially acting through protein-protein interactions with BER specific factors. These advances have greatly enhanced our understanding of the role of p53 in DNA repair and this review comprehensively summarizes current opinions on the mechanisms of p53-dependent DNA repair.


DNA Repair | 2003

The DDB2 nucleotide excision repair gene product p48 enhances global genomic repair in p53 deficient human fibroblasts

Maureen E. Fitch; Irina V. Cross; Stephanie Turner; Shanthi Adimoolam; Cindy X. Lin; Kevin G. Williams; James M. Ford

The tumor suppressor protein p53 functions in many cellular responses to UV-induced DNA damage, including activating the global nucleotide excision repair (NER) pathway. A potential mechanism for the effect on NER is through the ability of p53 to transcriptionally regulate genes that are directly involved in NER. DDB2 is one such gene that is regulated by p53 at both the basal and UV inducible levels. In order to further understand p53s role in NER, we transfected and selected clones that stably overexpress DDB2 in a human p53 deficient cell line. Global genomic repair (GGR) of cyclobutane pyrimidine dimers was significantly increased in the DDB2 expressing cells in comparison to controls, demonstrating that p53 wt protein itself is not directly required for efficient GGR. The protein product of DDB2, p48, is also post-translationally regulated by proteasomal degradation in response to UV irradiation. The regulation of p48 at both the transcriptional level by p53, and post-translationally by the proteasome suggests that p48 may be a rate limiting component of NER.


Genes & Cancer | 2012

Identification of a Functional In Vivo p53 Response Element in the Coding Sequence of the Xeroderma Pigmentosum Group C Gene

Kedar Hastak; Shanthi Adimoolam; Nathan D. Trinklein; Richard M. Myers; James M. Ford

The protein product of the xeroderma pigmentosum group C (XPC) gene is a DNA damage recognition factor that functions early in the process of global genomic nucleotide excision repair. Regulation of XPC expression is governed in part by p53 at the transcriptional level. To identify the regulatory elements involved in the p53-dependent control of XPC expression, we performed a quantitative PCR tiling experiment using multiple regularly spaced primer pairs over an 11-kb region centered around the XPC transcriptional start site. p53 chromatin immunoprecipitation was performed following ultraviolet irradiation, and DNA was analyzed for enrichment at each of 48 amplicons covering this region. A segment just upstream of the XPC translational initiation site was significantly enriched, whereas no enrichment of any other region was noted. In vitro promoter reporter assays and gel retardation assays were used to confirm the p53 responsiveness of this region and to define the minimal region with stimulating activity. We identified a p53 response element that has significant similarity to a consensus sequence, with 3 mismatches. This response element is unique in that part of the p53 binding site included the coding sequence for the first 2 amino acids in the XPC protein.


Journal of Biological Chemistry | 2001

The p53-regulated cyclin-dependent kinase inhibitor, p21 (cip1, waf1,sdi1), is not required for global genomic and transcription-coupled nucleotide excision repair of UV-induced DNA photoproducts.

Shanthi Adimoolam; Cindy X. Lin; James M. Ford


Journal of Biological Chemistry | 2005

Control of ASPP2/53BP2L Protein Levels by Proteasomal Degradation Modulates p53 Apoptotic Function

Zhiyi Zhu; Jason Ramos; Kerstin M. Kampa; Shanthi Adimoolam; Mint Sirisawad; Zhiyong Yu; Dexi Chen; Louie Naumovski; Charles D. Lopez

Collaboration


Dive into the Shanthi Adimoolam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Cooke

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Mint Sirisawad

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge