Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph J. Kingston is active.

Publication


Featured researches published by Joseph J. Kingston.


Journal of Immunological Methods | 2013

Evaluation of IgY capture ELISA for sensitive detection of Alpha hemolysin of Staphylococcus aureus without staphylococcal protein A interference

Prakash Reddy; Aravind Shekar; Joseph J. Kingston; Murali Harishchandra Sripathy; Harshvardhan Batra

Staphylococcal protein A (Spa) secreted by all Staphylococcus aureus strains is the major hindrance in development of specific immunoassays for detecting S. aureus antigens, because of its characteristic feature of binding to Fc region of most mammalian immunoglobulins and also to Fab region of certain classes of mammalian immunoglobulins. Immunoglobulin Y (IgY) is the avian equivalent of mammalian IgG which does not have any affinity to Spa. In the present study we report that using chicken egg yolk IgY over mammalian IgG as capture antibody prevents both soluble and surface bound protein A from causing false positives quantified by chicken anti-protein A antibodies. This was demonstrated by development of sandwich ELISA for detection of alpha hemolysin toxin from culture supernatants of S. aureus strains with anti alpha hemolysin IgY as capture and rabbit anti alpha hemolysin IgG as revealing antibody. This indirect sandwich ELISA was evaluated onto a large number of S. aureus isolates recovered from clinical sources for alpha hemolysin secretion. Results of sandwich ELISA were compared with PCR and Western blot analysis. The immunoassay is highly specific and has high sensitivity of detecting less than 1 ng/ml. This procedure is highly effective in eliminating Spa interference and can be extended to detection of other important superantigen toxins of S. aureus.


Indian Journal of Microbiology | 2010

Molecular characterization of lactic acid bacteria recovered from natural fermentation of beet root and carrot Kanji

Joseph J. Kingston; M. Radhika; P. T. Roshini; M. A. Raksha; H.S. Murali; Harsh Vardhan Batra

The lactic acid bacteria (LAB) play an important role in the fermentation of vegetables to improve nutritive value, palatability, acceptability, microbial quality and shelf life of the fermented produce. The LAB associated with beetroot and carrot fermentation were identified and characterized using different molecular tools. Amplified ribosomal DNA restriction analysis (ARDRA) provided similar DNA profile for the 16 LAB strains isolated from beetroot and carrot fermentation while repetitive extragenic palindromic PCR (rep-PCR) genotyping could differentiate the LAB strains into eight genotypes. Thirteen strains represented by five genotypes could be clustered in five distinct groups while three LAB strains exhibiting distinct genotypes remained ungrouped. These genotypes could be identified to be belonging to L. plantarum group by 16S rDNA sequencing. The recAnested multiplex PCR employing species-specific primers for the L. plantarum group members identified the LAB strains of six genotypes to be L. paraplantarum and the other two genotypes to be L. pentosus. Three genotypes of L. paraplantarum were consistently found on the third and sixth day of beetroot fermentation whereas a distinct genotype of L. paraplantarum and L. pentosus appeared predominant on the tenth day. From carrot Kanji two distinct genotypes of L. paraplantarum and one genotype of L. pentosus were identified. REP-PCR DNA fingerprinting coupled with 16S rDNA sequencing and recA-nested multiplex PCR could clearly identify as well as differentiate the diverse L. plantarum group strains involved in the fermentation.


Vaccine | 2014

A recombinant bivalent fusion protein rVE confers active and passive protection against Yersinia enterocolitica infection in mice

Amit Kumar Singh; Joseph J. Kingston; H.S. Murali; Harsh Vardhan Batra

In the present study, a bivalent chimeric protein rVE comprising immunologically active domains of Yersinia pestis LcrV and YopE was assessed for its prophylactic abilities against Yersinia enterocolitica O:8 infection in murine model. Mice immunized with rVE elicited significantly higher antibody titers with substantial contribution from the rV component (3:1 ratio). Robust and significant resistance to Y. enterocolitica infection with 100% survival (P<0.001) was seen in rVE vaccinated mice when intra peritoneal (I.P.) challenged with 10(8)CFU of Y. enterocolitica O:8 against the 75%, 60% and 75% survival seen in mice immunized with rV, rE, rV+rE, respectively. Macrophage monolayer supplemented with anti-rVE polysera illustrated efficient protection (89.41% survival) against challenge of Y. enterocolitica O:8. In contrast to sera from sham-immunized mice, immunization with anti-rVE polysera provided complete protection to BALB/c mice against I.P. challenge with 10(8)CFU of Y. enterocolitica O:8 and developed no conspicuous signs of infection in necropsy. The histopathological analysis of microtome sections confirmed significantly reduced lesion size or no lesion in liver and intestine upon infection in anti-rVE immunized mice. The findings from this study demonstrated the fusion protein rVE as a potential candidate subunit vaccine and showed the functional role of antibodies in protection against Y. enterocolitica infections.


Journal of Applied Microbiology | 2012

Generation and characterization of an inter‐generic bivalent alpha domain fusion protein αCS from Clostridium perfringens and Staphylococcus aureus for concurrent diagnosis and therapeutic applications

Siva R. Uppalapati; Joseph J. Kingston; H.S. Murali; Harsh Vardhan Batra

Aim:  To evaluate an inter‐generic recombinant alpha domain fusion protein for simultaneous detection and neutralization of Clostridium perfringens and Staphylococcus aureus alpha toxins.


Journal of Microbiology | 2009

Molecular characterization of Vibrio cholerae isolates from cholera outbreaks in north India

Joseph J. Kingston; Kuruvilla Zachariah; Urmil Tuteja; Sanjay Kumar; Harsh Vardhan Batra

Vibrio cholerae isolates recovered from cholera outbreaks in Bhind district of Madhya Pradesh and Delhi, Northern India were characterized. The O1 serogroup isolates from Bhind outbreak were of Inaba serotype whereas both Ogawa and Inaba serotypes were recovered from Delhi. PCR analysis revealed that only O1 serogroup V. cholerae isolates carried the virulence-associated genes like ctxA, tcpA, ace, and zot. Molecular typing by repetitive sequence based ERIC, VCR1, and VC1 PCR’s revealed similar DNA profile for both Inaba and Ogawa serotypes. A discrete VC1-PCR band identified among the El Tor strains had greater similarity (>97%) to the V. cholerae genome sequence and therefore has the potential to be used as a marker for the identification of the V. cholerae strains. Non-O1 strains recovered from Bhind region differed among themselves as well as from that of the O1 isolates. All the O1 serogroup isolates possessed SXT element and were uniformly resistant to the antibiotics nalidixic acid, polymyxin-B, furazolidone, cloxacilin, trimethoprim-sulfamethaxazole, and vibriostatic agent 0129. Inaba strains from both Delhi and Bhind differed from Ogawa strains by their resistance to streptomycin despite sharing similar DNA patterns in all the three rep-PCRs. Though Delhi and Bhind are separate geographical regions in Northern India, Inaba strains from both these places appear to be closely related owing to their similarity in antibiogram and genetic profile.


Vaccine | 2014

Heterologous protection against alpha toxins of Clostridium perfringens and Staphylococcus aureus induced by binding domain recombinant chimeric protein

Siva R. Uppalapati; Joseph J. Kingston; H.S. Murali; Harsh Vardhan Batra

Clostridium perfringens and Staphylococcus aureus are the two important bacteria frequently associated with majority of the soft tissue infections. The severity and progression of the diseases caused by these pathogens are attributed primarily to the alpha toxins they produce. Previously, we synthesized a non-toxic chimeric molecule r-αCS encompassing the binding domains of C. perfringens and S. aureus alpha toxins and demonstrated that the r-αCS hyperimmune polysera reacts with both the native wild type toxins. In the present report, we evaluated efficacy of r-αCS in conferring protection against C. perfringens and S. aureus alpha toxin infections in murine model. Immunization of BALB/c with r-αCS was effective in inducing both high titers of serum anti-r-αCS antibodies after three administrations. Sub-typing the antibody pool revealed high proportions of IgG1 indicating a Th2-polarized immune response. The r-αCS stimulated the proliferation of splenocytes from the immunized mice upon re-induction by the antigen, in vitro. The levels of interleukin-10 increased while TNF-α was found to be downregulated in the r-αCS induced splenocytes. Mice immunized with r-αCS were protected against intramuscular challenge with 5×LD100 doses of C. perfringens and S. aureus alpha toxins with >80% survival, which killed control animals within 48-72h. Passive immunization of mice with anti-r-αCS serum resulted in 50-80% survival. Our results indicate that r-αCS is a remarkable antigen with protective efficacy against alpha toxin mediated C. perfringens and S. aureus soft tissue co-infections.


PLOS ONE | 2013

In silico, in vitro and in vivo analysis of binding affinity between N and C-domains of Clostridium perfringens alpha toxin.

Siva R. Uppalapati; Joseph J. Kingston; Insaf A. Qureshi; H.S. Murali; Harsh Vardhan Batra

Clostridium perfringens alpha toxin/phospholipase C (CP-PLC) is one of the most potent bacterial toxins known to cause soft tissue infections like gas gangrene in humans and animals. It is the first bacterial toxin demonstrated to be an enzyme with phospholipase, sphingomyelinase and lecithinase activities. The toxin is comprised of an enzymatic N-domain and a binding C-domain interconnected by a flexible linker. The N-domain alone is non-toxic to mammalian cells, but incubation with C-domain restores the toxicity, the mechanism of which is still not elucidated. The objectives of the current study were to investigate the formation of a stable N and C-domain complex, to determine possible interactions between the two domains in silico and to characterize the in vitro and in vivo correlates of the interaction. To establish the existence of a stable N and C-domain hybrid, in vitro pull down assay and dot-Far Western blotting assays were employed, where it was clearly revealed that the two domains bound to each other to form an intermediate. Using bioinformatics tools like MetaPPISP, PatchDock and FireDock, we predicted that the two domains may interact with each other through electrostatic interactions between at least six pairs of amino acids. This N and C-domains interacted with each other in 1:1 ratio and the hybrid lysed mouse erythrocytes in a slower kinetics when compared with wild type native Cp-PLC. BALB/c mice when challenged with N and C-domain hybrid demonstrated severe myonecrosis at the site of injection while no death was observed. Our results provide further insight into better understanding the mechanism for the toxicity of Cp-PLC N and C-domain mixture.


Frontiers in Microbiology | 2016

Immuno Affinity SELEX for Simple, Rapid, and Cost-Effective Aptamer Enrichment and Identification against Aflatoxin B1.

Keerthana Setlem; Bhairab Mondal; Shylaja Ramlal; Joseph J. Kingston

Aflatoxins are naturally occurring mycotoxins that contaminate food and agro commodities, leading to acute and chronic health conditions in human and animals. In the present work, an attempt was made to generate high-affinity single stranded DNA aptamers that specifically bind to Aflatoxin B1 (AFB1) by a modified Systemic Evolution of Ligands by Exponential Enrichment (SELEX) procedure with the aid of Immunoaffinity columns. Ten rounds of SELEX and alternating three counter SELEX rounds with a cocktail of related and other mycotoxins were performed to enhance the specificity. Resultant 105 aptamers were clustered into 12 groups according to their primary sequence homology. Candidates with lowest Gibbs free energy (dG value) and unique stem loop structures were selected for further characterization. Aptamers, AFLA5, AFLA53, and AFLA71 exhibiting lower Kd values (50.45 ± 11.06, 48.29 ± 9.45, and 85.02 ± 25.74 nM) were chosen for development of ELONA and determination of purification ability of toxin. The detection limit (LOD) of AFLA5 and AFLA71 was 20 and 40 ng/ml, respectively. HPLC analysis implied that selected aptamers were able to recover and quantify 82.2 to 96.21% (LOQ – 53.74 ng) and 78.3 to 94.22% (LOQ – 66.75 ng) of AFB1 from spiked corn samples, respectively. These findings indicate, immunoaffinity based SELEX can pave an alternative approach to screen aptamers against mycotoxin detection and purification.


Molecular Immunology | 2015

Immunization with recombinant bivalent chimera r-Cpae confers protection against alpha toxin and enterotoxin of Clostridium perfringens type A in murine model

Das Shreya; Siva R. Uppalapati; Joseph J. Kingston; Murali Harishchandra Sripathy; Harsh Vardhan Batra

Clostridium perfringens type A, an anaerobic pathogen is the most potent cause of soft tissue infections like gas gangrene and enteric diseases like food poisoning and enteritis. The disease manifestations are mediated via two important exotoxins, viz. myonecrotic alpha toxin (αC) and enterotoxin (CPE). In the present study, we synthesized a bivalent chimeric protein r-Cpae comprising C-terminal binding regions of αC and CPE using structural vaccinology rationale and assessed its protective efficacy against both alpha toxin (αC) and enterotoxin (CPE) respectively, in murine model. Active immunization of mice with r-Cpae generated high circulating serum IgG (systemic), significantly increased intestinal mucosal s-IgA antibody titres and resulted in substantial protection to the immunized animals (100% and 75% survival) with reduced tissue morbidity when administered with 5×LD(100) doses of αC (intramuscular) and CPE (intra-gastric gavage) respectively. Mouse RBCs and Caco-2 cells incubated with a mixture of anti-r-Cpae antibodies and αC and CPE respectively, illustrated significantly higher protection against the respective toxins. Passive immunization of mice with a similar mixture resulted in 91-100% survival at the end of the 15 days observation period while mice immunized with a concoction of sham sera and respective toxins died within 2-3 days. This work demonstrates the efficacy of the rationally designed r-Cpae chimeric protein as a potential sub unit vaccine candidate against αC and CPE of C. perfringens type A toxemia.


PLOS ONE | 2014

Functional Characterization and Evaluation of In Vitro Protective Efficacy of Murine Monoclonal Antibodies BURK24 and BURK37 against Burkholderia pseudomallei

Bhavani V. Peddayelachagiri; Soumya Paul; Shivakiran S. Makam; Radhika M. Urs; Joseph J. Kingston; Urmil Tuteja; Murali Harishchandra Sripathy; Harsh Vardhan Batra

Burkholderia pseudomallei, the causative agent of melioidosis has been recognized by CDC as a category B select agent. Although substantial efforts have been made for development of vaccine molecules against the pathogen, significant hurdles still remain. With no licensed vaccines available and high relapse rate of the disease, there is a pressing need for development of alternate protection strategies. Antibody-mediated passive protection is promising in this regard and our primary interest was to unravel this frontier of specific mAbs against Burkholderia pseudomallei infections, as functional characterization of antibodies is a pre-requisite to demonstrate them as protective molecules. To achieve this, we designed our study on in vitro-based approach and assessed two mAbs, namely BURK24 and BURK37, reactive with outer membrane proteins and lipopolysaccharide of the pathogen respectively, for their ability to manifest inhibitory effects on the pathogenesis mechanisms of B. pseudomallei including biofilm formation, invasion and induction of apoptosis. The experiments were performed using B. pseudomallei standard strain NCTC 10274 and a clinical isolate, B. pseudomallei 621 recovered from a septicemia patient with diabetic ailment. The growth kinetic studies of the pathogen in presence of various concentrations of each individual mAb revealed their anti-bacterial properties. Minimal inhibitory concentration and minimal bactericidal concentration of both the mAbs were determined by using standards of Clinical and Laboratory Standards Institute (CLSI) and experiments were performed using individual mAbs at their respective bacteriostatic concentration. As an outcome, both mAbs exhibited significant anti-Burkholderia pseudomallei properties. They limited the formation of biofilm by the bacterium and completely crippled its invasion into human alveolar adenocarcinoma epithelial cells. Also, the mAbs were appreciably successful in preventing the bacterium to induce apoptosis in A549 cells. The present study design revealed the protection attributes possessed by BURK24 and BURK37 that has to be further substantiated by additional in vivo studies.

Collaboration


Dive into the Joseph J. Kingston's collaboration.

Top Co-Authors

Avatar

Harsh Vardhan Batra

Defence Food Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

H.S. Murali

Defence Food Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Shylaja Ramlal

Defence Food Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Siva R. Uppalapati

Defence Food Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bhairab Mondal

Defence Food Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Saugata Majumder

Defence Food Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Shivakiran S. Makam

Defence Food Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Urmil Tuteja

Defence Research and Development Organisation

View shared research outputs
Top Co-Authors

Avatar

Bhavanashri N

Defence Food Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge