Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shylaja Ramlal is active.

Publication


Featured researches published by Shylaja Ramlal.


Journal of Immunological Methods | 2014

Development and evaluation of IgY ImmunoCapture PCR ELISA for detection of Staphylococcus aureus enterotoxin A devoid of protein A interference

Prakash Reddy; Shylaja Ramlal; Murali Harishchandra Sripathy; Harsh Vardhan Batra

In the present study, a sensitive and specific IgY mediated ImmunoCapture-PCR-ELISA (IC-PCR-ELISA) was developed for the detection of staphylococcal enterotoxin A (SEA) from culture supernatants and suspected contaminated samples. Due to the virtue of avian immunoglobulins (IgY) to have the least affinity towards staphylococcal protein A (SpA) responsible for false positives, we employed anti-SEA IgY for capture of SEA toxin and revealed with SEA specific rabbit antibodies conjugated to a 524bp DNA marker. Biotin-11-dUTP was incorporated during PCR amplification and post PCR analysis was performed by PCR-ELISA. Unlike IgG immunocapture, IgY mediated immunocapture of SEA was free from false positives due to protein A. The developed assay was specific to SEA except for minor cross reactivity with staphylococcal enterotoxin E (SEE). Several raw milk samples were evaluated for the presence of SEA with and without enrichment. Three samples were found to be positive for SEA after enrichment for 8h. Though IC-PCR-ELISA for SEA showed 100% correlation with PCR analysis for sea gene, the assay was unique in terms of sensitivity of detecting ~10pg/ml of SEA toxin from spiked milk samples. Result of IC-PCR-ELISA was further confirmed by conventional methods of isolation and characterization. The presented method can be very useful for rapid analysis of milk samples for SEA contamination and can be further extended for detection of multiple SEs in different wells of same PCR plate using common DNA substrate.


ACS Combinatorial Science | 2016

Selection and Characterization of Aptamers Using a Modified Whole Cell Bacterium SELEX for the Detection of Salmonella enterica Serovar Typhimurium.

Padma Sudha Rani Lavu; Bhairab Mondal; Shylaja Ramlal; Harishchandra Sreepathy Murali; Harsh Vardhan Batra

This study describes the selection of single-stranded DNA (ssDNA) aptamers against Salmonella enterica serovar Typhimurium using a modified whole cell systematic evolution of ligands by exponential enrichment (whole cell SELEX). For evolving specific aptamers, ten rounds of selection to live Salmonella cells, alternating with negative selection against a cocktail of related pathogens, were performed. The resulting highly enriched oligonucleotide pools were sequenced and clustered into eight groups based on primary sequence homology and predicted secondary structure similarity. Fifteen sequences from different groups were selected for further characterization. The binding affinity and specificity of aptamers were determined by fluorescence binding assays. Aptamers (SAL 28, SAL 11, and SAL 26) with dissociation constants of 195 ± 46, 184 ± 43, and 123 ± 23 nM were used to develop a nanogold-based colorimetric detection method and a sedimentation assay. The former showed a better sensitivity limit of 10(2) CFU/mL using aptamer SAL 26. This approach should enable further refinement of diagnostic methods for the detection of Salmonella enterica serovar Typhimurium and of other microbial pathogens.


Journal of Applied Microbiology | 2014

Development and evaluation of a novel combinatorial selective enrichment and multiplex PCR technique for molecular detection of major virulence‐associated genes of enterotoxigenic Staphylococcus aureus in food samples

Sowmya Nagaraj; Shylaja Ramlal; Murali Harishchandra Sripathy; Harshvardhan Batra

To develop a multiplex PCR assay coupled with selective enrichment step to detect major virulence‐associated genes of enterotoxigenic Stap‐hylococcus aureus and evaluate the same directly on contaminated food samples.


Frontiers in Microbiology | 2016

Immuno Affinity SELEX for Simple, Rapid, and Cost-Effective Aptamer Enrichment and Identification against Aflatoxin B1.

Keerthana Setlem; Bhairab Mondal; Shylaja Ramlal; Joseph J. Kingston

Aflatoxins are naturally occurring mycotoxins that contaminate food and agro commodities, leading to acute and chronic health conditions in human and animals. In the present work, an attempt was made to generate high-affinity single stranded DNA aptamers that specifically bind to Aflatoxin B1 (AFB1) by a modified Systemic Evolution of Ligands by Exponential Enrichment (SELEX) procedure with the aid of Immunoaffinity columns. Ten rounds of SELEX and alternating three counter SELEX rounds with a cocktail of related and other mycotoxins were performed to enhance the specificity. Resultant 105 aptamers were clustered into 12 groups according to their primary sequence homology. Candidates with lowest Gibbs free energy (dG value) and unique stem loop structures were selected for further characterization. Aptamers, AFLA5, AFLA53, and AFLA71 exhibiting lower Kd values (50.45 ± 11.06, 48.29 ± 9.45, and 85.02 ± 25.74 nM) were chosen for development of ELONA and determination of purification ability of toxin. The detection limit (LOD) of AFLA5 and AFLA71 was 20 and 40 ng/ml, respectively. HPLC analysis implied that selected aptamers were able to recover and quantify 82.2 to 96.21% (LOQ – 53.74 ng) and 78.3 to 94.22% (LOQ – 66.75 ng) of AFB1 from spiked corn samples, respectively. These findings indicate, immunoaffinity based SELEX can pave an alternative approach to screen aptamers against mycotoxin detection and purification.


Gene | 2012

A simple and universal ligation mediated fusion of genes based on hetero-staggered PCR for generating immunodominant chimeric proteins.

Prakash Reddy; Shylaja Ramlal; Murali Harishchandra Sripathy; Harshvardhan Batra

We developed a simple T4 DNA ligase mediated strategy for inframe splicing of two or more cohesive genes generated by hetero-staggered PCR and directionally cloning the spliced product bearing sticky overhangs in to a correspondingly cut vector. For this, two pairs of primers are used in two different parallel PCRs, for generation of each cohesive gene product. We exemplified this strategy by splicing two major super-antigen genes of Staphylococcus aureus, namely, staphylococcal enterotoxin A (sea), and toxic shock syndrome toxin (tsst-1) followed by its directional cloning into pre-digested pRSET A vector. The fusion gene encoding chimeric recombinant SEA-TSST protein (32kDa) was expressed in E. coli BL21(DE3) host strain. The recombinant chimeric protein retained the antigenicity of both toxins as observed by the strong immunoreactivity with commercial antibodies against both SEA and TSST-1 toxin components by Western blot analysis. We observed that the present method for gene splicing with cohesive ends is simple since it does not require elaborate standardization and a single fusion product is obtained consistently during nested PCR with forward primer of first gene and reverse primer of second gene. For comparison, we fused the same genes using splicing by overlap extension PCR (SOE-PCR) and consistently obtained DNA smearing and multiple non-specific bands even after several rounds of PCRs from gel excised product. Moreover, the newly described method requires only two to six complimentary sticky ends between the genes to be spliced, in contrast to long stretch of overlapping nucleotides in case of SOE-PCR.


Frontiers in Microbiology | 2018

Highly Sensitive Colorimetric Biosensor for Staphylococcal Enterotoxin B by a Label-Free Aptamer and Gold Nanoparticles

Bhairab Mondal; Shylaja Ramlal; Padma Sudha Rani Lavu; Bhavanashri N; Joseph J. Kingston

A simple, sensitive and selective colorimetric biosensor for the detection of Staphylococcal enterotoxin B (SEB) was developed using SEB-binding aptamer (SEB2) as recognition element and unmodified gold nanoparticles (AuNPs) as colorimetric probes. The assay is based on color change from red to purple due to conformational change of aptamer in the presence of SEB, and the phenomenon of salt-induced AuNPs aggregation which could be monitored by naked eye or UV–vis spectrometer. Results showed that the AuNPs can effectively differentiate the SEB induced conformational change of the aptamer in the presence of a given high salt concentration. A linear response in the range of 50 μg/mL to 0.5 ng/mL of SEB concentration was obtained. The assay was highly specific to SEB as compared to other related toxins. The limit of detection (LOD) of SEB achieved within few minutes was 50 ng/mL visually and spectrometric method improved it to 0.5 ng/mL. Robustness of the assay was tested in artificially spiked milk samples and cross-checked using in house developed sandwich ELISA (IgY as capturing and SEB specific monoclonal as revealing antibody) and PCR. This colorimetric assay could be a suitable alternative over existing methods during biological emergencies due to its simplicity, sensitive and cost effectiveness.


Microbiological Research | 2014

Application of monoclonal antibodies generated against Panton-Valentine Leukocidin (PVL-S) toxin for specific identification of community acquired methicillin resistance Staphylococcus aureus

Niveditha Sundar Poojary; Shylaja Ramlal; Radhika M. Urs; Murali Harishchandra Sripathy; Harsh Vardhan Batra

Panton-Valentine Leukocidin (PVL) produced by community acquired methicillin Staphylococcus aureus (CA-MRSA) involved in skin and soft-tissue infections and necrotizing pneumonia comprised of two fractions, namely PVL S and PVL F. In the present study, three monoclonal antibodies designated as MAb1, MAb9 and MAb10 were generated against recombinant PVL-S (35kDa) protein of S. aureus. All the three MAbs specifically reacted to confirm PVL-S positive strains of S. aureus recovered from clinical samples in Western blot analysis. Similarly all the three MAbs did not show any binding to other tested 14 different pathogenic bacteria belonging to other genera and species in Western blot analysis. Furthermore, a simple dot-ELISA method was standardized for the identification of PVL-S toxin containing S. aureus strains. Initially in dot-ELISA, Protein A (Spa) of S. aureus posed background noise problems due to the non-specific binding of antibodies resulting in false positive reactions. With the addition of 10mM diethylpyrocarbonate (DEPC) along with 5% milk in PBS in the blocking step prevented this non-specific binding of Spa to mouse anti-PVL monoclonal antibodies in dot-ELISA. Once standardized, this simple dot-ELISA was evaluated with nine PVL positive strains recovered from food, environmental and clinical samples and the results were compared with PCR assay for the presence of PVL toxin genes and also with Western blot analysis. A 100% correlation was found between dot-ELISA, PCR assay and Western blot analysis. Collectively our results suggest the newly developed simple dot-ELISA system can be of immense help in providing, rapid detection of the PVL toxin containing S. aureus strains at a relatively low cost and will be a valuable tool for the reliable identification of CA-MRSA.


Medical Microbiology and Immunology | 2018

Intranasal co-administration of recombinant active fragment of Zonula occludens toxin and truncated recombinant EspB triggers potent systemic, mucosal immune responses and reduces span of E. coli O157:H7 fecal shedding in BALB/c mice

Aravind Shekar; Shylaja Ramlal; Joseph Kingston Jeyabalaji; Murali Harishchandra Sripathy

Escherichia coli O157:H7 with its traits such as intestinal colonization and fecal-oral route of transmission demands mucosal vaccine development. E. coli secreted protein B (EspB) is one of the key type III secretory system (TTSS) targets for mucosal candidate vaccine due to its indispensable role in the pathogenesis of E. coli O157:H7. However, mucosally administered recombinant proteins have low immunogenicity which could be overcome by the use of mucosal adjuvants. The quest for safe, potent mucosal adjuvant has recognized ΔG fragment of Zonula occludens toxin of Vibrio cholerae with such properties. ΔG enhances mucosal permeability via the paracellular route by altering epithelial tight junction structure in a reversible, ephemeral and non-toxic manner. Therefore, we tested whether recombinant ΔG intranasally co-administered with truncated EspB (EspB + ΔG) could serve as an effective mucosal adjuvant. Results showed that EspB + ΔG group induced higher systemic IgG and mucosal IgA than EspB alone. Moreover, EspB alone developed Th2 type response with IgG1/IgG2a ratio (1.64) and IL-4, IL-10 cytokines whereas that of EspB + ΔG group generated mixed Th1/Th2 type immune response evident from IgG1/IgG2a ratio (1.17) as well as IL-4, IL-10 and IFN-γ cytokine levels compared to control. Sera of EspB + ΔG group inhibited TTSS mediated haemolysis of murine RBCs more effectively compared to EspB, control group and sera of both EspB + ΔG, EspB group resulted in similar levels of efficacious reduction in E. coli O157:H7 adherence to Caco-2 cells compared to control. Moreover, vaccination with EspB + ΔG resulted in significant reduction in E. coli O157:H7 fecal shedding compared to EspB and control group in experimentally challenged streptomycin-treated mice. These results demonstrate mucosal adjuvanticity of ΔG co-administered with EspB in enhancing overall immunogenicity to reduce E. coli O157:H7 shedding.


Journal of Pure and Applied Microbiology | 2018

Development and Evaluation of IgY Immunocapture PCR for Detection of Enteropathogenic E. coli Devoid of Protein A Interference

Shruthi Aradhya; Prakash Reddy; Shylaja Ramlal; Sowmya Nagaraj; Bhairab Mondal; H.S. Murali

Diarrheagenic Escherichia coli, an important etiologic agent of diarrhea is a major public health problem in developing countries, particularly in children. Enteropathogenic Escherichia coli is a leading cause of infantile diarrhea. Although the frequency of these organisms has decreased, they continue to be an important cause of diarrhea. Therefore, in the present study, a sensitive and specific IgY mediated Immunocapture-PCR (IC-PCR) was developed for the detection of enteropathogenic E. coli (EPEC). Due to an advantage of avian immunoglobulin (IgY) to have the least affinity towards staphylococcal enterotoxin A (SpA) responsible for false positives, we employed antiouter-membrane protein (OMP) IgY generated in chicken for capture of bfpA gene and was incorporated with PCR amplification. In the present study, IgY mediated immunocapture of bfpA gene was free from false positives due to protein A, a common drawback in IgG mediated immunocapture techniques. Furthermore, spiking studies and analysis on natural samples emphasized the robustness as well as applicability of developed method. The developed assay could be reliable in the detection of EPEC as a routine investigation method. Further, the assay could be further applied for the detection of other pathotypes from food and clinical sources.


International Journal of Food Microbiology | 2018

Capture and detection of Staphylococcus aureus with dual labeled aptamers to cell surface components

Shylaja Ramlal; Bhairab Mondal; Padma Sudha Rani Lavu; Bhavanashri N; Joseph J. Kingston

In the present study, a high throughput whole cell SELEX method has been applied successfully in selecting specific aptamers against whole cells of Staphylococcus aureus, a potent food poisoning bacterium. A total ten rounds of SELEX and three rounds of intermittent counter SELEX, was performed to obtain specific aptamers. Obtained oligonucleotide pool were cloned, sequenced and then grouped into different families based on their primary sequence homology and secondary structure similarity. FITC labeled sequences from different families were selected for further characterization via flow cytometry analysis. The dissociation constant (Kd) values of specific and higher binders ranged from 34 to 128nM. Binding assays to assess the selectivity of aptamer RAB10, RAB 20, RAB 28 and RAB 35 demonstrated high affinity against S. aureus and low binding affinity for other bacteria. To demonstrate the potential use of the aptamer a sensitive dual labeled sandwich detection system was developed using aptamer RAB10 and RAB 35 with a detection limit of 102CFU/mL. Furthermore detection from mixed cell population and spiked sample emphasized the robustness as well as applicability of the developed method. Altogether, the established assay could be a reliable detection tool for the routine investigation of Staphylococcus aureus in samples from food and clinical sources.

Collaboration


Dive into the Shylaja Ramlal's collaboration.

Top Co-Authors

Avatar

Harsh Vardhan Batra

Defence Food Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bhairab Mondal

Defence Food Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Joseph J. Kingston

Defence Food Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sowmya Nagaraj

Defence Food Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Padma Sudha Rani Lavu

Defence Food Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Aravind Shekar

Defence Food Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bhavanashri N

Defence Food Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Harshvardhan Batra

Defence Food Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Prakash Reddy

Defence Food Research Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge