Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph L. Hardy is active.

Publication


Featured researches published by Joseph L. Hardy.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study.

Henry W. Mahncke; Bonnie B. Connor; Jed Appelman; Omar N. Ahsanuddin; Joseph L. Hardy; Richard A. Wood; Nicholas M. Joyce; Tania Boniske; Sharona M. Atkins; Michael M. Merzenich

Normal aging is associated with progressive functional losses in perception, cognition, and memory. Although the root causes of age-related cognitive decline are incompletely understood, psychophysical and neuropsychological evidence suggests that a significant contribution stems from poorer signal-to-noise conditions and down-regulated neuromodulatory system function in older brains. Because the brain retains a lifelong capacity for plasticity and adaptive reorganization, dimensions of negative reorganization should be at least partially reversible through the use of an appropriately designed training program. We report here results from such a training program targeting age-related cognitive decline. Data from a randomized, controlled trial using standardized measures of neuropsychological function as outcomes are presented. Significant improvements in assessments directly related to the training tasks and significant generalization of improvements to nonrelated standardized neuropsychological measures of memory (effect size of 0.25) were documented in the group using the training program. Memory enhancement appeared to be sustained after a 3-month no-contact follow-up period. Matched active control and no-contact control groups showed no significant change in memory function after training or at the 3-month follow-up. This study demonstrates that intensive, plasticity-engaging training can result in an enhancement of cognitive function in normal mature adults.


PLOS ONE | 2010

The Influence of Perceptual Training on Working Memory in Older Adults

Anne S. Berry; Theodore P. Zanto; Wesley C. Clapp; Joseph L. Hardy; Peter B. Delahunt; Henry W. Mahncke; Adam Gazzaley

Normal aging is associated with a degradation of perceptual abilities and a decline in higher-level cognitive functions, notably working memory. To remediate age-related deficits, cognitive training programs are increasingly being developed. However, it is not yet definitively established if, and by what mechanisms, training ameliorates effects of cognitive aging. Furthermore, a major factor impeding the success of training programs is a frequent failure of training to transfer benefits to untrained abilities. Here, we offer the first evidence of direct transfer-of-benefits from perceptual discrimination training to working memory performance in older adults. Moreover, using electroencephalography to evaluate participants before and after training, we reveal neural evidence of functional plasticity in older adult brains, such that training-induced modifications in early visual processing during stimulus encoding predict working memory accuracy improvements. These findings demonstrate the strength of the perceptual discrimination training approach by offering clear psychophysical evidence of transfer-of-benefit and a neural mechanism underlying cognitive improvement.


Journal of Experimental Psychology: Human Perception and Performance | 2005

Stimulus selectivity of figural aftereffects for faces

Jill Yamashita; Joseph L. Hardy; Karen K. De Valois; Michael A. Webster

Viewing a distorted face induces large aftereffects in the appearance of an undistorted face. The authors examined the processes underlying this adaptation by comparing how selective the aftereffects are for different dimensions of the images including size, spatial frequency content, contrast, and color. Face aftereffects had weaker selectivity for changes in the size, contrast, or color of the images and stronger selectivity for changes in contrast polarity or spatial frequency. This pattern could arise if the adaptation is contingent on the perceived similarity of the stimuli as faces. Consistent with this, changing contrast polarity or spatial frequency had larger effects on the perceived identity of a face, and aftereffects were also selective for different individual faces. These results suggest that part of the sensitivity changes underlying the adaptation may arise at visual levels closely associated with the representation of faces.


Journal of Vision | 2008

The effect of senescence on orientation discrimination and mechanism tuning

Peter B. Delahunt; Joseph L. Hardy; John S. Werner

Accurately processing orientation information is a fundamental component of visual performance. Single-unit recordings have shown that the orientation tuning of individual neurons in macaque cortical areas V1 and V2 is reduced dramatically with age (M. T. Schmolesky, Y. Wang, M. Pu, & A. G. Leventhal, 2000; S. Yu, Y. Wang, X. Li, Y. Zhou, & A. G. Leventhal, 2006). These researchers suggest that losses in single-unit orientation selectivity result in declines in orientation discrimination and object recognition in older humans. Three experiments were conducted to determine whether human performance is affected by putative age-related changes in tuning of cortical neurons. Ten younger and ten older observers participated in this study. Experiment 1 demonstrated significant differences in the contrast sensitivity of the two age groups. Experiment 2 showed significant differences in orientation discrimination thresholds. However, when thresholds were plotted in terms of multiples of detection threshold, age-related differences were not observed. In Experiment 3, perceptual orientation tuning curves did not significantly differ in shape for younger and older subjects. As in Experiment 2, at any given contrast, there is a large difference in sensitivity between younger and older adults. This implies a model of orientation processing that allows the adult visual system to maintain consistent and reliable orientation information at the network and ultimately the perceptual level.


Journal of Vision | 2009

Role of high-order aberrations in senescent changes in spatial vision

Sarah L. Elliott; Stacey S. Choi; Nathan Doble; Joseph L. Hardy; Julia W. Evans; John S. Werner

The contributions of optical and neural factors to age-related losses in spatial vision are not fully understood. We used closed-loop adaptive optics to test the visual benefit of correcting monochromatic high-order aberrations (HOAs) on spatial vision for observers ranging in age from 18 to 81 years. Contrast sensitivity was measured monocularly using a two-alternative forced-choice (2AFC) procedure for sinusoidal gratings over 6 mm and 3 mm pupil diameters. Visual acuity was measured using a spatial 4AFC procedure. Over a 6 mm pupil, young observers showed a large benefit of AO at high spatial frequencies, whereas older observers exhibited the greatest benefit at middle spatial frequencies, plus a significantly larger increase in visual acuity. When age-related miosis is controlled, young and old observers exhibited a similar benefit of AO for spatial vision. An increase in HOAs cannot account for the complete senescent decline in spatial vision. These results may indicate a larger role of additional optical factors when the impact of HOAs is removed, but also lend support for the importance of neural factors in age-related changes in spatial vision.


PLOS ONE | 2015

Enhancing Cognitive Abilities with Comprehensive Training: A Large, Online, Randomized, Active-Controlled Trial

Joseph L. Hardy; Rolf Nelson; Moriah E. Thomason; Daniel A. Sternberg; Kiefer Katovich; Faraz Farzin; Michael J. Scanlon

Background A variety of studies have demonstrated gains in cognitive ability following cognitive training interventions. However, other studies have not shown such gains, and questions remain regarding the efficacy of specific cognitive training interventions. Cognitive training research often involves programs made up of just one or a few exercises, targeting limited and specific cognitive endpoints. In addition, cognitive training studies typically involve small samples that may be insufficient for reliable measurement of change. Other studies have utilized training periods that were too short to generate reliable gains in cognitive performance. Methods The present study evaluated an online cognitive training program comprised of 49 exercises targeting a variety of cognitive capacities. The cognitive training program was compared to an active control condition in which participants completed crossword puzzles. All participants were recruited, trained, and tested online (N = 4,715 fully evaluable participants). Participants in both groups were instructed to complete one approximately 15-minute session at least 5 days per week for 10 weeks. Results Participants randomly assigned to the treatment group improved significantly more on the primary outcome measure, an aggregate measure of neuropsychological performance, than did the active control group (Cohen’s d effect size = 0.255; 95% confidence interval = [0.198, 0.312]). Treatment participants showed greater improvements than controls on speed of processing, short-term memory, working memory, problem solving, and fluid reasoning assessments. Participants in the treatment group also showed greater improvements on self-reported measures of cognitive functioning, particularly on those items related to concentration compared to the control group (Cohen’s d = 0.249; 95% confidence interval = [0.191, 0.306]). Conclusion Taken together, these results indicate that a varied training program composed of a number of tasks targeted to different cognitive functions can show transfer to a wide range of untrained measures of cognitive performance. Trial Registration ClinicalTrials.gov NCT-02367898


Psychological Science | 2005

Color Naming, Lens Aging, and Grue What the Optics of the Aging Eye Can Teach Us About Color Language

Joseph L. Hardy; Christina M. Frederick; Paul Kay; John S. Werner

Many languages without separate terms for green and blue are or were spoken in locations receiving above-average exposure to ultraviolet-B (UV-B) radiation. It has been proposed that this correlation is caused by premature lens aging. This conclusion was supported by an experiment in which younger observers used the term “blue” less often when they described simulated paint chips filtered through the equivalent of an older observers lens—removing much short-wavelength light—than when they described the unfiltered versions of the same paint chips. Some stimuli that were called “blue” without simulated aging were called “green” when filtered. However, in the experiment reported here, we found that the proportion of “blue” color-name responses did not differ between younger subjects and older observers with known ocular media optical densities. Color naming for stimuli that were nominally green, blue-green, or blue was virtually identical for older and younger observers who viewed the same (unfiltered) stimuli. Our results are inconsistent with the lens-brunescence hypothesis.


Journal of Vision | 2007

Aging and blur adaptation

Sarah L. Elliott; Joseph L. Hardy; Michael A. Webster; John S. Werner

Color appearance remains remarkably stable in the aging visual system despite large changes in the spectral distribution of the retinal stimulus and losses in chromatic sensitivity (P. B. Delahunt, J. L. Hardy, K. Okajima, & J. S. Werner, 2005; J. S. Werner, 1996). This stability could reflect adaptive adjustments in peripheral or central chromatic mechanisms that compensate for sensitivity losses in senescence. We asked whether similar compensatory adjustments play a role in maintaining spatial vision--and whether the adaptation itself shows changes with aging-by examining the effects of adaptation on judgments of image focus. Perceptual aftereffects following adaptation to a uniform field and blurred or sharpened images were compared between younger adults and older observers. Subjects adapted to a sequence of blurred or sharpened images for 120 s, and a two-alternative forced-choice staircase task was used to vary the filter exponent of the test to define the subjective point of best focus. There was a small but significant difference between younger and older observers in the level perceived as best focused in all three adaptation conditions, possibly reflecting differences in the ambient blur level the groups are routinely exposed to. However, the magnitude of the blur aftereffect did not differ between the two age groups. These results suggest that although there may be small differences in the long-term adaptation to blur, younger and older observers do not differ in the strength of adaptation to transient changes in blur. The neural processes mediating adaptation to blur thus appear to remain largely intact with aging.


Vision Research | 2005

The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation.

Frédéric Devinck; Peter B. Delahunt; Joseph L. Hardy; Lothar Spillmann; John S. Werner

When a dark chromatic contour delineating a figure is flanked on the inside by a brighter chromatic contour, the brighter color will spread into the entire enclosed area. This is known as the watercolor effect (WCE). Here we quantified the effect of color spreading using both color-matching and hue-cancellation tasks. Over a wide range of stimulus chromaticities, there was a reliable shift in color appearance that closely followed the direction of the inducing contour. When the contours were equated in luminance, the WCE was still present, but weak. The magnitude of the color spreading increased with increases in luminance contrast between the two contours. Additionally, as the luminance contrast between the contours increased, the chromaticity of the induced color more closely resembled that of the inside contour. The results support the hypothesis that the WCE is mediated by luminance-dependent mechanisms of long-range color assimilation.


Journal of The Optical Society of America A-optics Image Science and Vision | 2005

Senescence of spatial chromatic contrast sensitivity. I. Detection under conditions controlling for optical factors

Joseph L. Hardy; Peter B. Delahunt; Katsunori Okajima; John S. Werner

Chromatic contrast thresholds for spatially varying patterns of various spatial frequencies (0.5, 1, 2, and 4 cycles per degree) were measured for ten older (65-77 yr of age) and ten younger (18-30 yr of age) observers. The stimuli were Gabor patches modulated along S-varying or (L - M)-varying chromatic axes. Thresholds were determined for two sets of stimuli. For one set of stimuli, the mean chromaticity and luminance were equated at the cornea for all observers. The second set of stimuli was corrected for ocular media density differences to equate stimulation of each of the three cone types at the retina for each individual. Chromatic contrast thresholds were higher for older observers for all stimuli tested. The magnitude of this difference showed little dependence on spatial frequency. When stimuli were equated at the cornea, this difference was greater for S-varying stimuli. When stimuli were equated at the retina, the age-related difference in thresholds for S-varying stimuli was reduced. Both optical and neural factors contribute to these age-related losses in spatial chromatic contrast sensitivity.

Collaboration


Dive into the Joseph L. Hardy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John S. Werner

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge