Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah L. Elliott is active.

Publication


Featured researches published by Sarah L. Elliott.


Journal of Vision | 2009

Role of high-order aberrations in senescent changes in spatial vision

Sarah L. Elliott; Stacey S. Choi; Nathan Doble; Joseph L. Hardy; Julia W. Evans; John S. Werner

The contributions of optical and neural factors to age-related losses in spatial vision are not fully understood. We used closed-loop adaptive optics to test the visual benefit of correcting monochromatic high-order aberrations (HOAs) on spatial vision for observers ranging in age from 18 to 81 years. Contrast sensitivity was measured monocularly using a two-alternative forced-choice (2AFC) procedure for sinusoidal gratings over 6 mm and 3 mm pupil diameters. Visual acuity was measured using a spatial 4AFC procedure. Over a 6 mm pupil, young observers showed a large benefit of AO at high spatial frequencies, whereas older observers exhibited the greatest benefit at middle spatial frequencies, plus a significantly larger increase in visual acuity. When age-related miosis is controlled, young and old observers exhibited a similar benefit of AO for spatial vision. An increase in HOAs cannot account for the complete senescent decline in spatial vision. These results may indicate a larger role of additional optical factors when the impact of HOAs is removed, but also lend support for the importance of neural factors in age-related changes in spatial vision.


Journal of Vision | 2007

Aging and blur adaptation

Sarah L. Elliott; Joseph L. Hardy; Michael A. Webster; John S. Werner

Color appearance remains remarkably stable in the aging visual system despite large changes in the spectral distribution of the retinal stimulus and losses in chromatic sensitivity (P. B. Delahunt, J. L. Hardy, K. Okajima, & J. S. Werner, 2005; J. S. Werner, 1996). This stability could reflect adaptive adjustments in peripheral or central chromatic mechanisms that compensate for sensitivity losses in senescence. We asked whether similar compensatory adjustments play a role in maintaining spatial vision--and whether the adaptation itself shows changes with aging-by examining the effects of adaptation on judgments of image focus. Perceptual aftereffects following adaptation to a uniform field and blurred or sharpened images were compared between younger adults and older observers. Subjects adapted to a sequence of blurred or sharpened images for 120 s, and a two-alternative forced-choice staircase task was used to vary the filter exponent of the test to define the subjective point of best focus. There was a small but significant difference between younger and older observers in the level perceived as best focused in all three adaptation conditions, possibly reflecting differences in the ambient blur level the groups are routinely exposed to. However, the magnitude of the blur aftereffect did not differ between the two age groups. These results suggest that although there may be small differences in the long-term adaptation to blur, younger and older observers do not differ in the strength of adaptation to transient changes in blur. The neural processes mediating adaptation to blur thus appear to remain largely intact with aging.


Journal of Vision | 2010

Age-related changes in contrast gain related to the M and P pathways

Sarah L. Elliott; John S. Werner

Neural contributions to the age-related reduction in spatial vision are incontrovertible. Whether there are differential age-related changes in the magnocellular (M) and parvocellular (P) pathways across the life span has not been tested extensively. We studied psychophysically the contrast gain signature of the M and P pathways for 13 younger and 13 older observers. Two separate paradigms thought to separate the M and P pathways based on their contrast gain (J. Pokorny & V. C. Smith, 1997) signature were used. A four-square array was presented as an increment or decrement on a background of 115 Td for 35 ms, with one test square presented at a slightly higher or lower retinal illumination. Using a four-alternative forced-choice procedure, the observers task was to choose the unique square. The two paradigms differed only in the pretrial adaptation and inter-stimulus array. Data were fitted with models of contrast discrimination derived from the unique contrast gain signatures. The fitted models indicate a change in the discrimination functions with age for both the M and P pathways, revealing a shift in the contrast gain slope. Results indicate that both M and P pathways undergo age-related changes, but functional losses appear greater for the P pathway under the conditions tested.


Journal of Vision | 2011

Response normalization and blur adaptation: Data and multi-scale model

Sarah L. Elliott; Mark A. Georgeson; Michael A. Webster

Adapting to blurred or sharpened images alters perceived blur of a focused image (M. A. Webster, M. A. Georgeson, & S. M. Webster, 2002). We asked whether blur adaptation results in (a) renormalization of perceived focus or (b) a repulsion aftereffect. Images were checkerboards or 2-D Gaussian noise, whose amplitude spectra had (log-log) slopes from -2 (strongly blurred) to 0 (strongly sharpened). Observers adjusted the spectral slope of a comparison image to match different test slopes after adaptation to blurred or sharpened images. Results did not show repulsion effects but were consistent with some renormalization. Test blur levels at and near a blurred or sharpened adaptation level were matched by more focused slopes (closer to 1/f) but with little or no change in appearance after adaptation to focused (1/f) images. A model of contrast adaptation and blur coding by multiple-scale spatial filters predicts these blur aftereffects and those of Webster et al. (2002). A key proposal is that observers are pre-adapted to natural spectra, and blurred or sharpened spectra induce changes in the state of adaptation. The model illustrates how norms might be encoded and recalibrated in the visual system even when they are represented only implicitly by the distribution of responses across multiple channels.


Spatial Vision | 2006

Neural adjustments to chromatic blur.

Michael A. Webster; Yoko Mizokami; Leedjia A. Svec; Sarah L. Elliott

The perception of blur in images can be strongly affected by prior adaptation to blurry images or by spatial induction from blurred surrounds. These contextual effects may play a role in calibrating visual responses for the spatial structure of luminance variations in images. We asked whether similar adjustments might also calibrate the visual system for spatial variations in color. Observers adjusted the amplitude spectra of luminance or chromatic images until they appeared correctly focused, and repeated these measurements either before or after adaptation to blurred or sharpened images or in the presence of blurred or sharpened surrounds. Prior adaptation induced large and distinct changes in perceived focus for both luminance and chromatic patterns, suggesting that luminance and chromatic mechanisms are both able to adjust to changes in the level of blur. However, judgments of focus were more variable for color, and unlike luminance there was little effect of surrounding spatial context on perceived blur. In additional measurements we explored the effects of adaptation on threshold contrast sensitivity for luminance and color. Adaptation to filtered noise with a 1/f spectrum characteristic of natural images strongly and selectively elevated thresholds at low spatial frequencies for both luminance and color, thus transforming the chromatic contrast sensitivity function from lowpass to nearly bandpass. These threshold changes were found to reflect interactions between different spatial scales that bias sensitivity against the lowest spatial grain in the image, and may reflect adaptation to different stimulus attributes than the attributes underlying judgments of image focus. Our results suggest that spatial sensitivity for variations in color can be strongly shaped by adaptation to the spatial structure of the stimulus, but point to dissociations in these visual adjustments both between luminance and color and different measures of spatial sensitivity.


Journal of Cataract and Refractive Surgery | 2009

Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation.

John S. Werner; Sarah L. Elliott; Stacey S. Choi; Nathan Doble

PURPOSE: To evaluate the influence of spherical aberration on contrast sensitivity using adaptive optics. SETTING: Vision Science and Advanced Retinal Imaging Laboratory, Department of Ophthalmology & Vision Science, University of California, Davis Medical Center, Sacramento, California, USA. METHODS: Contrast sensitivity at 8 cycles per degree was evaluated using an adaptive optics system that permitted aberrations to be measured with a Hartmann‐Shack wavefront sensor and controlled by a 109 actuator continuous‐surface deformable mirror that was at a plane conjugate to the observers pupil. Vertical Gabor patches were viewed through a 6.3 mm diameter pupil conjugate aperture. Contrast sensitivity was measured with the deformable mirror set to produce 1 of 5 spherical aberration profiles (−0.2 to +0.2 μm). Contrast sensitivity over the range of spherical aberration was fitted with a polynomial function. RESULTS: Three subjects (age 21 to 24 years) participated. The measured total mean spherical aberration resulting from the spherical aberration profiles produced by the deformable mirror was between −0.15 μm and +0.25 μm. The peak contrast sensitivity of this function for the 3 subjects combined occurred at +0.06 μm of spherical aberration. The peak contrast sensitivity was also achieved with positive spherical aberration for each subjects data fitted individually (mean 0.09). CONCLUSION: There was intersubject variability in the measurements; however, the mean visual performance was best with the introduction of a small positive spherical aberration.


Journal of Vision | 2010

The oblique effect has an optical component: Orientation-specific contrast thresholds after correction of high-order aberrations

Ian J. Murray; Sarah L. Elliott; Aris Pallikaris; John S. Werner; Stacey S. Choi; Humza J. Tahir

Most of the high-order aberrations of the eye are not circularly symmetric. Hence, while it is well known that human vision is subject to cortically based orientation preference in cell tuning, the optics of the eye might also introduce some orientational anisotropy. We tested this idea by measuring contrast sensitivity at different orientations of sine-wave gratings when viewing through a closed-loop adaptive optics phoropter. Under aberration-corrected conditions, mean contrast sensitivity improved for all observers by a factor of 1.8× to 5×. The detectability of some orientations improved more than others. As expected, this orientation-specific effect varied between individuals. The sensitivity benefits were accurately predicted from MTF model simulations, demonstrating that the observed effects reflected the individuals pattern of high-order aberrations. In one observer, the orientation-specific effects were substantial: an improvement of 8× at one orientation and 2× in another orientation. The experiments confirm that, for conditions that are not diffraction limited, the optics of the eye introduce rotational asymmetry to the luminance distribution on the retina and that this impacts vision, inducing orientational anisotropy. These results suggest that the traditional view of meridional anisotropy having an entirely neural origin may be true for diffraction-limited pupils but that viewing through larger pupils introduces an additional orientation-specific optical component to this phenomenon.


Journal of Vision | 2012

Individual and age-related variation in chromatic contrast adaptation

Sarah L. Elliott; John S. Werner; Michael A. Webster

Precortical color channels are tuned primarily to the LvsM (stimulation of L and M cones varied, but S cone stimulation held constant) or SvsLM (stimulation of S cones varied, but L and M cone stimulation held constant) cone-opponent (cardinal) axes, but appear elaborated in the cortex to form higher-order mechanisms tuned to both cardinal and intermediate directions. One source of evidence for these higher-order mechanisms has been the selectivity of color contrast adaptation for noncardinal directions, yet the degree of this selectivity has varied widely across the small sample of observers tested in previous studies. This study explored the possible bases for this variation, and in particular tested whether it reflected age-related changes in the distribution or tuning of color mechanisms. Observers included 15 younger (18-22 years of age) and 15 older individuals (66-82), who adapted to temporal modulations along one of four chromatic axes (two cardinal and two intermediate axes) and then matched the hue and contrast of test stimuli lying along eight different directions in the equiluminant plane. All observers exhibited aftereffects that were selective for both the cardinal and intermediate directions, although selectivity was weaker for the intermediate axes. The degree of selectivity increased with the magnitude of adaptation for all axes, and thus adaptation strength alone may account for much of the variance in selectivity among observers. Older observers showed a stronger magnitude of adaptation thus, surprisingly, more conspicuous evidence for higher-order mechanisms. For both age groups the aftereffects were well predicted by response changes in chromatic channels with linear spectral sensitivities, and there was no evidence for weakened channel tuning with aging. The results suggest that higher-order mechanisms may become more exposed in observers or conditions in which the strength of adaptation is greater, and that both chromatic contrast adaptation and the cortical color coding it reflects remain largely intact in the aging visual system.


Journal of Vision | 2012

Scotopic hue percepts in natural scenes

Sarah L. Elliott; Dingcai Cao

Traditional trichromatic theories of color vision conclude that color perception is not possible under scotopic illumination in which only one type of photoreceptor, rods, is active. The current study demonstrates the existence of scotopic color perception and indicates that perceived hue is influenced by spatial context and top-down processes of color perception. Experiment 1 required observers to report the perceived hue in various natural scene images under purely rod-mediated vision. The results showed that when the test patch had low variation in the luminance distribution and was a decrement in luminance compared to the surrounding area, reddish or orangish percepts were more likely to be reported compared to all other percepts. In contrast, when the test patch had a high variation and was an increment in luminance, the probability of perceiving blue, green, or yellow hues increased. In addition, when observers had a strong, but singular, daylight hue association for the test patch, color percepts were reported more often and hues appeared more saturated compared to patches with no daylight hue association. This suggests that experience in daylight conditions modulates the bottom-up processing for rod-mediated color perception. In Experiment 2, observers reported changes in hue percepts for a test ring surrounded by inducing rings that varied in spatial context. In sum, the results challenge the classic view that rod vision is achromatic and suggest that scotopic hue perception is mediated by cortical mechanisms.


Vision Research | 2017

Attitudes about race predict individual differences in face adaptation aftereffects

Sarah L. Elliott; Kelly Chu; Jill M. Coleman

ABSTRACT This study examined whether category boundaries between Black and White faces relate to individual attitudes about race. Fifty‐seven (20 Black, 37 White) participants completed measures of explicit racism, implicit racism, collective self‐esteem (CSE), and racial centrality. Category boundaries between Black and White faces were measured in three separate conditions: following adaptation to (1) a neutral gray background, a sequence of (2) Black or (3) White faces. Two additional conditions measured category boundaries for facial distortion to investigate whether attitudes relate to mechanisms of racial identity alone, or to more global mechanisms of face perception. Using a two‐alternative forced‐choice staircase procedure, participants indicated whether a test image appeared to be Black or White (or contracted or expanded). Following neutral adaptation, participants with higher CSE showed category boundaries shifted toward faces with a higher percentage of Black features. In addition, the strength of short‐term sensitivity shifts following adaptation to Black and White faces was related to explicit and implicit attitudes about race. Sensitivity shifts were weaker when participants scored higher on explicit racism, but were stronger when participants scored higher on implicit but lower on explicit racism. The results of this study indicate that attitudes about race account for some individual differences in natural category boundaries between races as well as the strength of identity aftereffects following face adaptation.

Collaboration


Dive into the Sarah L. Elliott's collaboration.

Top Co-Authors

Avatar

John S. Werner

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dingcai Cao

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Peterzell

John F. Kennedy University

View shared research outputs
Researchain Logo
Decentralizing Knowledge