Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph M. Bosilevac is active.

Publication


Featured researches published by Joseph M. Bosilevac.


Meat Science | 2005

Post-harvest interventions to reduce/eliminate pathogens in beef.

Mohammad Koohmaraie; Terrance M. Arthur; Joseph M. Bosilevac; Michael N. Guerini; S. D. Shackelford; T. L. Wheeler

In 1999 the foodborne pathogens Salmonella, Listeria, Campylobacter, and Escherichia coli (both O157 and non-O157) were estimated to cause more than 6 million illnesses and approximately 9000 deaths each year. However, the most recent Centers for Disease Control and Prevention report on the sources and incidence of foodborne disease, released in 2004, has shown a dramatic decrease in E. coli O157:H7 infections. Since raw beef products are the most frequently foodborne sources of these pathogens, the results of this report demonstrate that the microbiological quality of raw beef has improved greatly. During the intervening years, post-harvest interventions have continually improved, with new attention to hide decontamination and innovative treatments of carcasses. In addition, a system to hold and test beef trim or ground beef for E. coli O157:H7 before its release into commerce has provided an even greater level of safety. In this paper, we review the latest information on the prevalence of E. coli O157:H7 and other pathogens on beef, the evidence identifying the hide as the primary source of pathogens on beef carcasses, the efficacy of various hide and carcass interventions, and other developments that have led or have the potential to lead to even greater improvements in the microbial quality of beef.


Journal of Food Protection | 2007

Transportation and lairage environment effects on prevalence, numbers, and diversity of Escherichia coli O157:H7 on hides and carcasses of beef cattle at processing.

Terrance M. Arthur; Joseph M. Bosilevac; Dayna M. Brichta-Harhay; Michael N. Guerini; Norasak Kalchayanand; S. D. Shackelford; T. L. Wheeler; Mohammad Koohmaraie

Hide has been established as the main source of carcass contamination during cattle processing; therefore, it is crucial to minimize the amount of Escherichia coli O157:H7 on cattle hides before slaughter. Several potential sources of E. coli O157: H7 are encountered during transportation and in the lairage environment at beef-processing facilities that could increase the prevalence and numbers of E. coli O157:H7 on the hides of cattle. On three separate occasions, samples were obtained from cattle at the feedlot and again after cattle were stunned and exsanguinated at the processing plant (286 total animals). The prevalence of E. coli O157:H7 on hides increased from 50.3 to 94.4% between the time cattle were loaded onto tractor-trailers at the feedlot and the time hides were removed in the processing plant. Before transport, nine animals had E. coli O157:H7 in high numbers (> 0.4 CFU/cm2) on their hides. When sampled at the slaughter facility, the number of animals with high hide numbers had increased to 70. Overall, only 29% of the E. coli O157:H7 isolates collected postharvest (221 of 764) matched pulsed-field gel electrophoresis types collected before transport. The results of this study indicate that transport to and lairage at processing plants can lead to increases in the prevalence and degree of E. coli O157:H7 contamination on hides and the number of E. coli O157:H7 pulsed-field gel electrophoresis types associated with the animals. More study is needed to confirm the mechanism by which additional E. coli O157:H7 strains contaminate cattle hides during transport and lairage and to design interventions to prevent this contamination.


Journal of Food Protection | 2003

Effect of chemical dehairing on the prevalence of Escherichia coli O157:H7 and the levels of aerobic bacteria and enterobacteriaceae on carcasses in a commercial beef processing plant.

Xiangwu Nou; Mildred Rivera-Betancourt; Joseph M. Bosilevac; T. L. Wheeler; S. D. Shackelford; Bucky L. Gwartney; James O. Reagan; Mohammad Koohmaraie

The objective of this experiment was to test the hypothesis that cleaning cattle hides by removing hair and extraneous matter before hide removal would result in improved microbiological quality of carcasses in commercial beef processing plants. To test this hypothesis, we examined the effect of chemical dehairing of cattle hides on the prevalence of Escherichia coli O157:H7 and the levels of aerobic bacteria and Enterobacteriaceae on carcasses. Samples from 240 control (conventionally processed) and 240 treated (chemically dehaired before hide removal) hides (immediately after stunning but before treatment) and preevisceration carcasses (immediately after hide removal) were obtained from four visits to a commercial beef processing plant. Total aerobic plate counts (APC) and Enterobacteriaceae counts (EBC) were not (P > 0.05) different between cattle designated for chemical dehairing (8.1 and 5.9 log CFU/100 cm2 for APC and EBC, respectively) and cattle designated for conventional processing (8.0 and 5.7 log CFU/100 cm2 for APC and EBC, respectively). However, E. coli O157:H7 hide prevalence was higher (P < 0.05) for the control group than for the treated group (67% versus 88%). In contrast to hides, the bacterial levels were lower (P < 0.05) on the treated (3.5 and 1.4 log CFU/100 cm2 for APC and EBC) than the control (5.5 and 3.2 log CFU/100 cm2 for APC and EBC) preevisceration carcasses. Prevalence of E. coli O157:H7 was lower (P > 0.05) on treated than on control preevisceration carcasses (1% versus 50%). These data indicate that chemical dehairing of cattle hides is an effective intervention to reduce the incidence of hide-to-carcass contamination with pathogens. The data also imply that any effective hide intervention process incorporated into beef processing procedures would significantly reduce carcass contamination by E. coli O157:H7.


Applied and Environmental Microbiology | 2009

Longitudinal Study of Escherichia coli O157:H7 in a Beef Cattle Feedlot and Role of High-Level Shedders in Hide Contamination

Terrance M. Arthur; James E. Keen; Joseph M. Bosilevac; Dayna M. Brichta-Harhay; Norasak Kalchayanand; S. D. Shackelford; T. L. Wheeler; Xiangwu Nou; Mohammad Koohmaraie

ABSTRACT The objectives of the study described here were (i) to investigate the dynamics of Escherichia coli O157:H7 fecal and hide prevalence over a 9-month period in a feedlot setting and (ii) to determine how animals shedding E. coli O157:H7 at high levels affect the prevalence and levels of E. coli O157:H7 on the hides of other animals in the same pen. Cattle (n = 319) were distributed in 10 adjacent pens, and fecal and hide levels of E. coli O157:H7 were monitored. When the fecal pen prevalence exceeded 20%, the hide pen prevalence was usually (25 of 27 pens) greater than 80%. Sixteen of 19 (84.2%) supershedder (>104 CFU/g) pens had a fecal prevalence greater than 20%. Significant associations with hide and high-level hide (≥40 CFU/100 cm2) contamination were identified for (i) a fecal prevalence greater than 20%, (ii) the presence of one or more high-density shedders (≥200 CFU/g) in a pen, and (iii) the presence of one or more supershedders in a pen. The results presented here suggest that the E. coli O157:H7 fecal prevalence should be reduced below 20% and the levels of shedding should be kept below 200 CFU/g to minimize the contamination of cattle hides. Also, large and unpredictable fluctuations within and between pens in both fecal and hide prevalence of E. coli O157:H7 were detected and should be used as a guide when preharvest studies, particularly preharvest intervention studies, are designed.


Applied and Environmental Microbiology | 2008

Salmonella and Escherichia coli O157:H7 Contamination on Hides and Carcasses of Cull Cattle Presented for Slaughter in the United States: an Evaluation of Prevalence and Bacterial Loads by Immunomagnetic Separation and Direct Plating Methods

Dayna M. Brichta-Harhay; Michael N. Guerini; Terrance M. Arthur; Joseph M. Bosilevac; Norasak Kalchayanand; S. D. Shackelford; T. L. Wheeler; Mohammad Koohmaraie

ABSTRACT The hide and carcass hygiene of cull cattle at slaughter in four geographically distant regions of the United States was examined from July 2005 to April 2006 by measuring the aerobic plate counts (APC) and the prevalences and loads of Salmonella and Escherichia coli O157:H7. The geometric mean log10 APC CFU/100 cm2 levels on hides and preevisceration and postintervention carcasses ranged from 6.17 to 8.19, 4.24 to 6.47, and 1.46 to 1.96, respectively, and were highest in the summer (P < 0.0001). The average prevalences of Salmonella on hides and preevisceration and postintervention carcasses were 89.6% (95% confidence interval [CI], 85.1 to 94.0), 50.2% (95% CI, 40.9 to 59.5), and 0.8% (95% CI, 0.18 to 1.42), respectively. The prevalences of E. coli O157:H7 were 46.9% (95% CI, 37.3 to 56.6) and 16.7% (95% CI, 9.8 to 23.6) on hides and preevisceration carcasses, respectively. Examination of the concomitant incidence of Salmonella and E. coli O157:H7 showed that, on average, 33.3% (95% CI, 15.9 to 69.8) of cattle hide and 4.1% (95% CI, 0.98 to 17.3) of preevisceration carcass samples were contaminated with both pathogens. The pathogen prevalence on hides and carcasses was not significantly affected by the season; however, significant differences were observed between plants with respect to the incoming pathogen load and the ability to mitigate hide-to-carcass transfer. In spite of these differences, postintervention carcass contamination was significantly reduced (P < 0.001), likely as a result of the use of one or more of the processing interventions employed at each of the four processing plants examined.


Journal of Food Protection | 2005

Development and Evaluation of an On-Line Hide Decontamination Procedure for Use in a Commercial Beef Processing Plant

Joseph M. Bosilevac; Xiangwu Nou; Matthew S. Osborn; Dell M. Allen; Mohammad Koohmaraie

The hides of cattle are the source of Escherichia coli O157:H7 that contaminates beef carcasses during commercial beef processing. Therefore, effective interventions that reduce hide contamination should reduce subsequent carcass contamination. The first objective of this study was to identify the most effective reagents for decontamination of beef hides. Cattle hides draped over barrels were used for in vitro experiments to compare the efficacy of washes using 1.6% sodium hydroxide, 4% trisodium phosphate, 4% chlorofoam, or 4% phosphoric acid, each followed by a rinse step using either water or acidified (pH 7.0) chlorine at 200 or 500 ppm. All treatments using a water rinse reduced hide coliform counts by 1.5 to 2.5 log CFU/100 cm2. Compared with water rinses, 200 and 500 ppm acidified chlorine rinses increased efficacy by approximately 1.0 and 2.0 log CFU/100 cm2, respectively. Vacuuming of the treated areas to remove excess liquid improved hide cleanliness by an average of an additional 1.0 log CFU/10...


Journal of Food Protection | 2004

Prevalence of Escherichia coli O157 and Levels of Aerobic Bacteria and Enterobacteriaceae Are Reduced When Hides Are Washed and Treated with Cetylpyridinium Chloride at a Commercial Beef Processing Plant

Joseph M. Bosilevac; Terrance M. Arthur; T. L. Wheeler; S. D. Shackelford; Michelle Rossman; James O. Reagan; Mohammad Koohmaraie

The objective of this experiment was to test the potential of a combined water wash and cetylpyridinium chloride (CPC) treatment as a hide intervention applied to cattle in the holding pens of a processing plant immediately before stunning. Over 2 processing days, 149 control and 139 treated cattle were tested. Control cattle were processed in the normal manner. The treatment group was prewashed with water the day before harvest. Immediately before stunning, these cattle were sprayed twice with 1% CPC, first for 3 min, then for 1 min. Hides and preevisceration carcasses were sampled to determine aerobic plate counts, Enterobacteriaceae counts (EBC), and Escherichia coli O157 prevalence. The treatment reduced the prevalence of E. coli O157 on hides from 56% to 34% and the prevalence on preevisceration carcasses from 23% to 3%. The treatment decreased aerobic plate counts from 4.9 log CFU/100 cm2 to 3.4 log CFU/100 cm2 and EBC from 3.1 log CFU/100 cm2 to 2.0 log CFU/100 cm2 on preevisceration carcasses. The treatment of hides did not result in any detectable CPC contamination of the chilled carcasses. These data indicated that a 1% CPC treatment preceded by a water wash was capable of reducing hide prevalence of E. coli O157 from as high as 80% to less than 50%, resulting in preevisceration carcass prevalence of 5% or less. We conclude that water washing followed by an antimicrobial treatment, such as CPC, has great potential as an effective hide intervention step and should be further evaluated for implementation as a processing step after stunning and before hide removal.


Applied and Environmental Microbiology | 2009

Prevalence and Characterization of Salmonellae in Commercial Ground Beef in the United States

Joseph M. Bosilevac; Michael N. Guerini; Norasak Kalchayanand; Mohammad Koohmaraie

ABSTRACT Commercially produced ground beef samples (n = 4,136) were collected from seven regions of the United States over a 24-month period (July 2005 to June 2007) and analyzed for the presence of Salmonella enterica by using methods that concurrently provided total prevalence and enumerable levels. The overall prevalence of Salmonella strains was 4.2%. Enumeration showed that 94.2% were present at levels below 2 CFU/g. Regional monthly prevalences of Salmonella strains varied from 1.8% to 6.5% but were not statistically different (P > 0.05). All Salmonella isolates were serotyped and their antibiotic susceptibilities determined and analyzed by pulsed-field gel electrophoresis (PFGE). The most common serotypes identified were Salmonella enterica serotypes Montevideo, Anatum, Muenster, and Mbandaka, with these accounting for one-half of the isolates obtained. The prevalence of multidrug-resistant (MDR) Salmonella was determined to be 0.6%. The most common MDR serotypes were Salmonella enterica serotypes Dublin, Reading, and Typhimurium. MDR strains had resistance to between 2 and 10 antibiotics. There were no regional differences in prevalence of MDR Salmonella. PFGE analysis revealed that indistinguishable XbaI and AvrII restriction digest patterns (RDPs) could be observed in isolates of the same serotype found in different regions and months of sampling. The RDPs of 19 Salmonella strains were compared to RDPs in the PulseNet USA database. Thirteen were indistinguishable from existing patterns, and the number of records for each ranged from 1 to 478. These data show that Salmonella prevalence in commercial ground beef is low and suggest that attempts to identify sources contributing to Salmonella in ground beef by serotype, antibiogram, and PFGE cannot be made without additional documented evidence.


Journal of Applied Microbiology | 2007

Enumeration of Salmonella and Escherichia coli O157:H7 in ground beef, cattle carcass, hide and faecal samples using direct plating methods†

Dayna M. Brichta-Harhay; Terrance M. Arthur; Joseph M. Bosilevac; Michael N. Guerini; Norasak Kalchayanand; Mohammad Koohmaraie

Aim:  To develop and validate high throughput methods for the direct enumeration of viable and culturable Salmonella and Escherichia coli O157:H7 in ground beef, carcass, hide and faecal (GCHF) samples from cattle.


Journal of Food Protection | 2006

Treatments Using Hot Water Instead of Lactic Acid Reduce Levels of Aerobic Bacteria and Enterobacteriaceae and Reduce the Prevalence of Escherichia coli O157:H7 on Preevisceration Beef Carcasses †

Joseph M. Bosilevac; Xiangwu Nou; Genevieve A. Barkocy-Gallagher; Terrance M. Arthur; Mohammad Koohmaraie

Lactic acid has become the most commonly used organic acid for treatment of postevisceration beef carcasses. Many processors have also implemented 2% lactic acid washes on preevisceration carcasses. We previously demonstrated that hot water washing and steam vacuuming are effective carcass interventions. Because of the effectiveness of hot water, we compared its use with that of lactic acid as a preevisceration wash in a commercial setting. A commercial hot water carcass wash cabinet applying 74 degrees C (165 degrees F) water for 5.5 s reduced both aerobic plate counts and Enterobacteriaceae counts by 2.7 log CFU/100 cm2 on preevisceration carcasses. A commercial lactic acid spray cabinet that applied 2% L-lactic acid at approximately 42 degrees C (105 to 110 degrees F) to preevisceration carcasses reduced aerobic plate counts by 1.6 log CFU/100 cm2 and Enterobacteriaceae counts by 1.0 log CFU/100 cm2. When the two cabinets were in use sequentially, i.e., hot water followed by lactic acid, aerobic plate counts were reduced by 2.2 log CFU/100 cm2 and Enterobacteriaceae counts were reduced by 2.5 log CFU/100 cm2. Hot water treatments reduced Escherichia coli O157:H7 prevalence by 81%, and lactic acid treatments reduced E. coli O157:H7 prevalence by 35%, but the two treatments in combination produced a 79% reduction in E. coli O157:H7, a result that was no better than that achieved with hot water alone. These results suggest that hot water would be more beneficial than lactic acid for decontamination of preevisceration beef carcasses.

Collaboration


Dive into the Joseph M. Bosilevac's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terrance M. Arthur

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

T. L. Wheeler

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Norasak Kalchayanand

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

S. D. Shackelford

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Dayna M. Brichta-Harhay

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Rong Wang

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

John W. Schmidt

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Michael N. Guerini

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Xiangwu Nou

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge