Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph Marcotrigiano is active.

Publication


Featured researches published by Joseph Marcotrigiano.


Cell | 1997

Cocrystal Structure of the Messenger RNA 5′ Cap-Binding Protein (eIF4E) Bound to 7-methyl-GDP

Joseph Marcotrigiano; Anne-Claude Gingras; Nahum Sonenberg; Stephen K. Burley

The X-ray structure of the eukaryotic translation initiation factor 4E (eIF4E), bound to 7-methyl-GDP, has been determined at 2.2 A resolution. eIF4E recognizes 5 7-methyl-G(5)ppp(5)N mRNA caps during the rate-limiting initiation step of translation. The protein resembles a cupped hand and consists of a curved, 8-stranded antiparallel beta sheet, backed by three long alpha helices. 7-methyl-GDP binds in a narrow cap-binding slot on the molecules concave surface, where 7-methyl-guanine recognition is mediated by base sandwiching between two conserved tryptophans, plus formation of three hydrogen bonds and a van der Waals contact between its N7-methyl group and a third conserved tryptophan. The convex dorsal surface of the molecule displays a phylogenetically conserved hydrophobic/acidic portion, which may interact with other translation initiation factors and regulatory proteins.


Nature | 2005

Structure of the zinc-binding domain of an essential component of the hepatitis C virus replicase

Timothy L. Tellinghuisen; Joseph Marcotrigiano; Charles M. Rice

Hepatitis C virus (HCV) is a human pathogen affecting nearly 3% of the worlds population. Chronic infections can lead to cirrhosis and liver cancer. The RNA replication machine of HCV is a multi-subunit membrane-associated complex. The non-structural protein NS5A is an active component of HCV replicase, as well as a pivotal regulator of replication and a modulator of cellular processes ranging from innate immunity to dysregulated cell growth. NS5A is a large phosphoprotein (56–58u2009kDa) with an amphipathic α-helix at its amino terminus that promotes membrane association. After this helix region, NS5A is organized into three domains. The N-terminal domain (domain I) coordinates a single zinc atom per protein molecule. Mutations disrupting either the membrane anchor or zinc binding of NS5A are lethal for RNA replication. However, probing the role of NS5A in replication has been hampered by a lack of structural information about this multifunctional protein. Here we report the structure of NS5A domain I at 2.5-Å resolution, which contains a novel fold, a new zinc-coordination motif and a disulphide bond. We use molecular surface analysis to suggest the location of protein-, RNA- and membrane-interaction sites.


Molecular Cell | 1999

Cap-Dependent Translation Initiation in Eukaryotes Is Regulated by a Molecular Mimic of eIF4G

Joseph Marcotrigiano; Anne-Claude Gingras; Nahum Sonenberg; Stephen K. Burley

eIF4G uses a conserved Tyr-X-X-X-X-Leu-phi segment (where X is variable and phi is hydrophobic) to recognize eIF4E during cap-dependent translation initiation in eukaryotes. High-resolution X-ray crystallography and complementary biophysical methods have revealed that this eIF4E recognition motif undergoes a disorder-to-order transition, adopting an L-shaped, extended chain/alpha-helical conformation when it interacts with a phylogenetically invariant portion of the convex surface of eIF4E. Inhibitors of translation initiation known as eIF4E-binding proteins (4E-BPs) contain similar eIF4E recognition motifs. These molecules are molecular mimics of eIF4G, which act by occupying the same binding site on the convex dorsum of eIF4E and blocking assembly of the translation machinery. The implications of our results for translation initiation are discussed in detail, and a molecular mechanism for relief of translation inhibition following phosphorylation of the 4E-BPs is proposed.


Journal of Molecular Biology | 2002

Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5' cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins.

Anna Niedzwiecka; Joseph Marcotrigiano; Janusz Stepinski; Marzena Jankowska-Anyszka; Aleksandra Wysłouch-Cieszyńska; Michal Dadlez; Anne-Claude Gingras; Pawel Mak; Edward Darzynkiewicz; Nahum Sonenberg; Stephen K. Burley; Ryszard Stolarski

mRNA 5-cap recognition by the eukaryotic translation initiation factor eIF4E has been exhaustively characterized with the aid of a novel fluorometric, time-synchronized titration method, and X-ray crystallography. The association constant values of recombinant eIF4E for 20 different cap analogues cover six orders of magnitude; with the highest affinity observed for m(7)GTP (approximately 1.1 x 10(8) M(-1)). The affinity of the cap analogues for eIF4E correlates with their ability to inhibit in vitro translation. The association constants yield contributions of non-covalent interactions involving single structural elements of the cap to the free energy of binding, giving a reliable starting point to rational drug design. The free energy of 7-methylguanine stacking and hydrogen bonding (-4.9 kcal/mol) is separate from the energies of phosphate chain interactions (-3.0, -1.9, -0.9 kcal/mol for alpha, beta, gamma phosphates, respectively), supporting two-step mechanism of the binding. The negatively charged phosphate groups of the cap act as a molecular anchor, enabling further formation of the intermolecular contacts within the cap-binding slot. Stabilization of the stacked Trp102/m(7)G/Trp56 configuration is a precondition to form three hydrogen bonds with Glu103 and Trp102. Electrostatically steered eIF4E-cap association is accompanied by additional hydration of the complex by approximately 65 water molecules, and by ionic equilibria shift. Temperature dependence reveals the enthalpy-driven and entropy-opposed character of the m(7)GTP-eIF4E binding, which results from dominant charge-related interactions (DeltaH degrees =-17.8 kcal/mol, DeltaS degrees= -23.6 cal/mol K). For recruitment of synthetic eIF4GI, eIF4GII, and 4E-BP1 peptides to eIF4E, all the association constants were approximately 10(7) M(-1), in decreasing order: eIF4GI>4E-BP1>eIF4GII approximately 4E-BP1(P-Ser65) approximately 4E-BP1(P-Ser65/Thr70). Phosphorylation of 4E-BP1 at Ser65 and Thr70 is insufficient to prevent binding to eIF4E. Enhancement of the eIF4E affinity for cap occurs after binding to eIF4G peptides.


Nature | 2006

Structure of the catalytic domain of the hepatitis C virus NS2-3 protease.

Ivo C. Lorenz; Joseph Marcotrigiano; Thomas G. Dentzer; Charles M. Rice

Hepatitis C virus is a major global health problem affecting an estimated 170 million people worldwide. Chronic infection is common and can lead to cirrhosis and liver cancer. There is no vaccine available and current therapies have met with limited success. The viral RNA genome encodes a polyprotein that includes two proteases essential for virus replication. The NS2-3 protease mediates a single cleavage at the NS2/NS3 junction, whereas the NS3-4A protease cleaves at four downstream sites in the polyprotein. NS3-4A is characterized as a serine protease with a chymotrypsin-like fold, but the enzymatic mechanism of the NS2-3 protease remains unresolved. Here we report the crystal structure of the catalytic domain of the NS2-3 protease at 2.3u2009Å resolution. The structure reveals a dimeric cysteine protease with two composite active sites. For each active site, the catalytic histidine and glutamate residues are contributed by one monomer, and the nucleophilic cysteine by the other. The carboxy-terminal residues remain coordinated in the two active sites, predicting an inactive post-cleavage form. Proteolysis through formation of a composite active site occurs in the context of the viral polyprotein expressed in mammalian cells. These features offer unexpected insights into polyprotein processing by hepatitis C virus and new opportunities for antiviral drug design.


Molecular Cell | 2001

A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery.

Joseph Marcotrigiano; Ivan B. Lomakin; Nahum Sonenberg; Tatyana V. Pestova; Christopher U.T. Hellen; Stephen K. Burley

The X-ray structure of the phylogenetically conserved middle portion of human eukaryotic initiation factor (eIF) 4GII has been determined at 2.4 A resolution, revealing a crescent-shaped domain consisting of ten alpha helices arranged as five HEAT repeats. Together with the ATP-dependent RNA helicase eIF4A, this HEAT domain suffices for 48S ribosomal complex formation with a picornaviral RNA internal ribosome entry site (IRES). Structure-based site-directed mutagenesis was used to identify two adjacent features on the surface of this essential component of the translation initiation machinery that, respectively, bind eIF4A and a picornaviral IRES. The structural and biochemical results provide mechanistic insights into both cap-dependent and cap-independent translation initiation.


Journal of Biological Chemistry | 1998

Cloning and characterization of 4EHP, a novel mammalian eIF4E-related cap-binding protein.

Eran Rom; Hyung Chan Kim; Anne-Claude Gingras; Joseph Marcotrigiano; Daniel Favre; Henrik Olsen; Stephen K. Burley; Nahum Sonenberg

All eukaryotic mRNAs (except organellar) are capped at their 5′ end. The cap structure (m7GpppN, where N is any nucleotide) is extremely important for the processing and translation of mRNA. Several cap-binding proteins that facilitate these processes have been characterized. Here we describe a novel human cytoplasmic protein that is 30% identical and 60% similar to the human translation initiation factor 4E (eIF4E). We demonstrate that this protein, named 4E Homologous Protein (4EHP), binds specifically to capped RNA in an ATP- and divalent ion-independent manner. The three-dimensional structure of 4EHP, as predicted by homology modeling, closely resembles that of eIF4E and site-directed mutagenesis analysis of 4EHP strongly suggests that it shares with eIF4E a common mechanism for cap binding. A putative function for 4EHP is discussed.


Archive | 1997

Crystal of a protein-ligand complex containing an N-terminal truncated eIF4E, and methods of use thereof

Stephen K. Burley; Nahum Sonenberg; Joseph Marcotrigiano; Anne-Claude Gingras


Archive | 2006

Structure of the hepatitis C NS5A protein

Charles M. Rice; Timothy L. Tellinghuisen; Joseph Marcotrigiano


Archive | 2006

Structure of the hepatitits c virus ns5a protein

Charles M. Rice; Timothy L. Tellinghuisen; Joseph Marcotrigiano

Collaboration


Dive into the Joseph Marcotrigiano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eran Rom

Rockefeller University

View shared research outputs
Researchain Logo
Decentralizing Knowledge