Joseph Meletiadis
National and Kapodistrian University of Athens
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joseph Meletiadis.
Clinical Microbiology Reviews | 2008
Karoll J. Cortez; Emmanuel Roilides; Flavio Quiroz-Telles; Joseph Meletiadis; Charalampos Antachopoulos; Tena A. Knudsen; Wendy L. Buchanan; Jeffrey Milanovich; Deanna A. Sutton; Annette W. Fothergill; Michael G. Rinaldi; Yvonne R. Shea; Theoklis E. Zaoutis; Shyam Kottilil; Thomas J. Walsh
SUMMARY Scedosporium spp. are increasingly recognized as causes of resistant life-threatening infections in immunocompromised patients. Scedosporium spp. also cause a wide spectrum of conditions, including mycetoma, saprobic involvement and colonization of the airways, sinopulmonary infections, extrapulmonary localized infections, and disseminated infections. Invasive scedosporium infections are also associated with central nervous infection following near-drowning accidents. The most common sites of infection are the lungs, sinuses, bones, joints, eyes, and brain. Scedosporium apiospermum and Scedosporium prolificans are the two principal medically important species of this genus. Pseudallescheria boydii, the teleomorph of S. apiospermum, is recognized by the presence of cleistothecia. Recent advances in molecular taxonomy have advanced the understanding of the genus Scedosporium and have demonstrated a wider range of species than heretofore recognized. Studies of the pathogenesis of and immune response to Scedosporium spp. underscore the importance of innate host defenses in protection against these organisms. Microbiological diagnosis of Scedosporium spp. currently depends upon culture and morphological characterization. Molecular tools for clinical microbiological detection of Scedosporium spp. are currently investigational. Infections caused by S. apiospermum and P. boydii in patients and animals may respond to antifungal triazoles. By comparison, infections caused by S. prolificans seldom respond to medical therapy alone. Surgery and reversal of immunosuppression may be the only effective therapeutic options for infections caused by S. prolificans.
Clinical Microbiology and Infection | 2014
Oliver A. Cornely; S. Arikan-Akdagli; Eric Dannaoui; Andreas H. Groll; Katrien Lagrou; Arunaloke Chakrabarti; Fanny Lanternier; Livio Pagano; Anna Skiada; Murat Akova; Maiken Cavling Arendrup; Teun Boekhout; Anuradha Chowdhary; Manuel Cuenca-Estrella; Tomáš Freiberger; Jesús Guinea; Josep Guarro; S. de Hoog; William W. Hope; Eric M. Johnson; Shallu Kathuria; Michaela Lackner; Cornelia Lass-Flörl; Olivier Lortholary; Jacques F. Meis; Joseph Meletiadis; Patricia Muñoz; Malcolm Richardson; Emmanuel Roilides; Anna Maria Tortorano
These European Society for Clinical Microbiology and Infectious Diseases and European Confederation of Medical Mycology Joint Clinical Guidelines focus on the diagnosis and management of mucormycosis. Only a few of the numerous recommendations can be summarized here. To diagnose mucormycosis, direct microscopy preferably using optical brighteners, histopathology and culture are strongly recommended. Pathogen identification to species level by molecular methods and susceptibility testing are strongly recommended to establish epidemiological knowledge. The recommendation for guiding treatment based on MICs is supported only marginally. Imaging is strongly recommended to determine the extent of disease. To differentiate mucormycosis from aspergillosis in haematological malignancy and stem cell transplantation recipients, identification of the reverse halo sign on computed tomography is advised with moderate strength. For adults and children we strongly recommend surgical debridement in addition to immediate first-line antifungal treatment with liposomal or lipid-complex amphotericin B with a minimum dose of 5 mg/kg/day. Amphotericin B deoxycholate is better avoided because of severe adverse effects. For salvage treatment we strongly recommend posaconazole 4×200 mg/day. Reversal of predisposing conditions is strongly recommended, i.e. using granulocyte colony-stimulating factor in haematological patients with ongoing neutropenia, controlling hyperglycaemia and ketoacidosis in diabetic patients, and limiting glucocorticosteroids to the minimum dose required. We recommend against using deferasirox in haematological patients outside clinical trials, and marginally support a recommendation for deferasirox in diabetic patients. Hyperbaric oxygen is supported with marginal strength only. Finally, we strongly recommend continuing treatment until complete response demonstrated on imaging and permanent reversal of predisposing factors.
Antimicrobial Agents and Chemotherapy | 2002
Joseph Meletiadis; Jacques F. Meis; Johan W. Mouton; Juan Luis Rodriquez-Tudela; J. Peter Donnelly; Paul E. Verweij
ABSTRACT The susceptibilities of 13 clinical isolates of Scedosporium apiospermum and 55 clinical isolates of S. prolificans to new and conventional drugs belonging to three different classes of antifungal agents, the azoles (miconazole, itraconazole, voriconazole, UR-9825, posaconazole), the polyenes (amphotericin B, nystatin and liposomal nystatin), and allylamines (terbinafine), were studied by use of proposed standard M38-P of NCCLS. Low growth-inhibitory antifungal activities were found in vitro for most of the drugs tested against S. prolificans isolates, with the MICs at which 90% of isolates are inhibited (MIC90s) being >8 μg/ml; the MIC90s of voriconazole and UR-9825, however, were 4 μg/ml. S. apiospermum isolates were more susceptible in vitro, with the highest activity exhibited by voriconazole (MIC90s, 0.5 μg/ml), followed by miconazole (MIC90s, 1 μg/ml), UR-9825 and posaconazole (MIC90s, 2 μg/ml), and itraconazole (MIC90s, 4 μg/ml). The MICs of terbinafine, amphotericin B, and the two formulations of nystatin (for which no statistically significant differences in antifungal activities were found for the two species) for S. apiospermum isolates were high. Cross-resistance was observed among all the azoles except posaconazole and among all the polyenes except the lipid formulation. A distribution analysis was performed with the MICs of each drug and for each species. Bimodal and skewed MIC distributions were obtained, and cutoffs indicating the borders of different MIC subpopulations of the distributions were determined on the basis of the normal plot technique. These cutoffs were in many cases reproducible between 48 and 72 h.
Antimicrobial Agents and Chemotherapy | 2003
Joseph Meletiadis; Johan W. Mouton; Jacques F. Meis; Paul E. Verweij
ABSTRACT The in vitro interaction between terbinafine and the azoles voriconazole, miconazole, and itraconazole against five clinical Scedosporium prolificans isolates after 48 and 72 h of incubation was tested by a microdilution checkerboard (eight-by-twelve) technique. The antifungal effects of the drugs alone and in combination on the fungal biomass as well as on the metabolic activity of fungi were measured using a spectrophotometric method and two colorimetric methods, based on the lowest drug concentrations showed 75 and 50% growth inhibition (MIC-1 and MIC-2, respectively). The nature and the intensity of the interactions were assessed using a nonparametric approach (fractional inhibitory concentration [FIC] index model) and a fully parametric response surface approach (Greco model) of the Loewe additivity (LA) no-interaction theory as well as a nonparametric (Prichard model) and a semiparametric response surface approaches of the Bliss independence (BI) no-interaction theory. Statistically significant synergy was found between each of the three azoles and terbinafine in all cases, although with different intensities. A 27- to 64-fold and 16- to 90-fold reduction of the geometric mean of the azole and terbinafine MICs, respectively, was observed when they were combined, resulting in FIC indices of <1 to 0.02. Using the MIC-1 higher levels of synergy were obtained, , which were more consistent between the two incubation periods than using the MIC-2. The strongest synergy among the azoles was found with miconazole using the BI-based models and with voriconazole using the LA-based models. The synergistic effects both on fungal growth and metabolic activity were more potent after 72 h of incubation. Fully parametric approaches in combination with the modified colorimetric method might prove useful for testing the in vitro interaction of antifungal drugs against filamentous fungi.
Clinical Microbiology and Infection | 2014
Anna Maria Tortorano; Malcolm Richardson; Emmanuel Roilides; A.D. van Diepeningen; Morena Caira; Patricia Muñoz; Eric M. Johnson; Joseph Meletiadis; Zoi-Dorothea Pana; Michaela Lackner; Paul E. Verweij; Tomáš Freiberger; Oliver A. Cornely; S. Arikan-Akdagli; Eric Dannaoui; Andreas H. Groll; Katrien Lagrou; Arunaloke Chakrabarti; Fanny Lanternier; Livio Pagano; Anna Skiada; Murat Akova; Maiken Cavling Arendrup; Teun Boekhout; Anuradha Chowdhary; Manuel Cuenca-Estrella; J. Guinea; Josep Guarro; S. de Hoog; William W. Hope
Mycoses summarized in the hyalohyphomycosis group are heterogeneous, defined by the presence of hyaline (non-dematiaceous) hyphae. The number of organisms implicated in hyalohyphomycosis is increasing and the most clinically important species belong to the genera Fusarium, Scedosporium, Acremonium, Scopulariopsis, Purpureocillium and Paecilomyces. Severely immunocompromised patients are particularly vulnerable to infection, and clinical manifestations range from colonization to chronic localized lesions to acute invasive and/or disseminated diseases. Diagnosis usually requires isolation and identification of the infecting pathogen. A poor prognosis is associated with fusariosis and early therapy of localized disease is important to prevent progression to a more aggressive or disseminated infection. Therapy should include voriconazole and surgical debridement where possible or posaconazole as salvage treatment. Voriconazole represents the first-line treatment of infections due to members of the genus Scedosporium. For Acremonium spp., Scopulariopsis spp., Purpureocillium spp. and Paecilomyces spp. the optimal antifungal treatment has not been established. Management usually consists of surgery and antifungal treatment, depending on the clinical presentation.
Journal of Clinical Microbiology | 2001
Joseph Meletiadis; Johan W. Mouton; Jacques F. Meis; Bianca A. Bouman; J.P. Donnelly; Paul E. Verweij
ABSTRACT A colorimetric assay for antifungal susceptibility testing ofAspergillus species (Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, Aspergillus nidulans, and Aspergillus ustus) is described based on the reduction of the tetrazolium salt 2,3-bis(2-methoxy-4-nitro-5-[(sulphenylamino)carbonyl]-2H-tetrazolium-hydroxide (XTT) in the presence of menadione as an electron-coupling agent. The combination of 200 μg of XTT/ml with 25 μM menadione resulted in a high production of formazan within 2 h of exposure, allowing the detection of hyphae formed by low inocula of 102 CFU/ml after 24 h of incubation. Under these settings, the formazan production correlated linearly with the fungal biomass and less-variable concentration effect curves for amphotericin B and itraconazole were obtained.
Emerging Infectious Diseases | 2015
J W M van der Linden; Maiken Cavling Arendrup; Adilia Warris; Katrien Lagrou; H Pelloux; Philippe M. Hauser; E. Chryssanthou; Emilia Mellado; Sarah Kidd; Anna Maria Tortorano; Eric Dannaoui; Peter Gaustad; John W. Baddley; A Uekötter; Cornelia Lass-Flörl; N Klimko; Caroline B. Moore; David W. Denning; Alessandro C. Pasqualotto; C Kibbler; S. Arikan-Akdagli; David R. Andes; Joseph Meletiadis; L Naumiuk; Marcio Nucci; Willem J. G. Melchers; Paul E. Verweij
To investigate azole resistance in clinical Aspergillus isolates, we conducted prospective multicenter international surveillance. A total of 3,788 Aspergillus isolates were screened in 22 centers from 19 countries. Azole-resistant A. fumigatus was more frequently found (3.2% prevalence) than previously acknowledged, causing resistant invasive and noninvasive aspergillosis and severely compromising clinical use of azoles.
Journal of Clinical Microbiology | 2001
Joseph Meletiadis; Jacques F. Meis; Johan W. Mouton; Paul E. Verweij
ABSTRACT A microbroth kinetic model based on turbidity measurements was developed in order to analyze the growth characteristics of three species of filamentous fungi (Rhizopus microsporus, Aspergillus fumigatus, and Scedosporium prolificans) characterized by different growth rates in five nutrient media (antibiotic medium 3, yeast nitrogen base medium, Sabouraud broth, RPMI 1640 alone, and RPMI 1640 with 2% glucose). In general, five distinct phases in the growth of filamentous fungi could be distinguished, namely, the lag phase, the first transition period, the log phase, the second transition period, and the stationary phase. The growth curves were smooth and were characterized by the presence of long transition periods. Among the different growth phases distinguished, the smallest variability in growth rates among the strains of each species was found during the log phase in all nutrient media. The different growth phases of filamentous fungi were barely distinguishable in RPMI 1640, in which the poorest growth was observed for all fungi even when the medium was supplemented with 2% glucose. R. microsporus and A. fumigatus grew better in Sabouraud and yeast nitrogen base medium than in RPMI 1640, with growth rates three to four times higher. None of the media provided optimal growth of S. prolificans. The germination of Rhizopus spores and Aspergillusand Scedosporium conidia commenced after 2 and 5 h of incubation, respectively. The elongation rates ranged from 39.6 to 26.7, 25.4 to 20.2, and 16.9 to 9.9 μm/h for Rhizopus, Aspergillus, and Scedoporium hyphae, respectively. The germination of conidia and spores and the elongation rates of hyphae were enhanced in antibiotic medium 3 and delayed in yeast nitrogen base medium. In conclusion, the growth curves provide a useful tool to gain insight into the growth characteristics of filamentous fungi in different nutrient media and may help to optimize the methodology for antifungal susceptibility testing.
Antimicrobial Agents and Chemotherapy | 2010
Joseph Meletiadis; Spyros Pournaras; Emmanuel Roilides; Thomas J. Walsh
ABSTRACT The fractional inhibitory concentration (FIC) index range of 0.5 to 4 that is commonly used to define additivity results in no interactions in most combination studies of antifungal agents. These results may differ from those of in vivo studies, where positive and negative interactions may be observed. We reassessed this in vitro FIC index range based on (i) the experimental variation of the checkerboard technique using multiple replicates, (ii) the ability to correctly determine purely additive self-drug and two-drug antagonistic combinations of amphotericin B (AMB) and voriconazole (VRC), (iii) Monte Carlo simulation analysis, and (iv) in vitro-in vivo correlation using experimental models of invasive pulmonary aspergillosis against the same Aspergillus fumigatus isolate based on visual, spectrophotometric, and colorimetric determinations of FICs after 24 and 48 h of incubation. FICs obtained after 24 h of incubation ranged from 0.5 to 1.25 for the self-drug additive combinations of AMB plus AMB and VRC plus VRC and from 2.25 to 4.25 for the antagonistic combination of AMB plus VRC. Monte Carlo simulation analysis showed that self-drug combinations were correctly classified as additive and that the combination of AMB plus VRC was correctly classified as antagonistic for >85% of the simulated FICs when deviation of the 95% confidence interval (CI) of replicate FICs from the additivity range of 1 to 1.25 was used to assess interactions after 24 h. In vitro-in vivo correlation analysis showed that the 95% CIs of the FICs of the in vivo synergistic combination anidulafungin plus VRC determined after 24 h were lower than 1 and the 95% CIs of the FICs of the in vivo antagonistic combination AMB plus ravuconazole were higher than 1.25. Adequate insight into weak pharmacodynamic interactions with in vivo relevance may be obtained by demonstrating that triplicate FICs at 24 h are outside an inclusive additivity range of 1 to 1.25.
American Journal of Clinical Pathology | 2007
Theodouli Stergiopoulou; Joseph Meletiadis; Emmanuel Roilides; David E. Kleiner; Robert L. Schaufele; Maureen Roden; Susan M. Harrington; Luqman Dad; Brahm H. Segal; Thomas J. Walsh
Invasive pulmonary aspergillosis (IPA) is an important cause of morbidity and mortality in neutropenic, nonneutropenic, and other immunocompromised patients. We therefore compared the patterns of infection and inflammation among 3 cohorts of immunocompromised patients with profound neutropenia, nonneutropenic immunosuppression, and hematopoietic stem cell transplantation. Lesions of IPA in neutropenic patients and hematopoietic stem cell transplant (HSCT) recipients were similar and consisted predominantly of angioinvasion and intraalveolar hemorrhage. The frequency of these histologic findings in neutropenic patients and HSCT recipients differed significantly from those of nonneutropenic patients (P < .05). It is noteworthy that even if HSCT recipients have normal peripheral blood neutrophil counts, there may be no influx into sites of infection. In the nonneutropenic cohort, lesions of IPA consisted mainly of neutrophilic and monocytic infiltrates and inflammatory necrosis. Thus, the status of innate host defenses contributes significantly to the histologic patterns observed in IPA.