Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph N. Boyer is active.

Publication


Featured researches published by Joseph N. Boyer.


Estuaries | 1997

Spatial Characterization of Water Quality in Florida Bay and Whitewater Bay by Multivariate Analyses: Zones of Similar Influence

Joseph N. Boyer; James W. Fourqurean; Ronald D. Jones

We apply an objective statistical analysis to a 6-yr, multiparameter dataset in an effort to describe the spatial dependence and inherent variation of water quality patterns in the Florida Bay-Whitewater Bay area. Principal component analysis of 16 water quality parameters collected monthly over a 6-yr period resulted in live principal components (PC) that explained 71.8% of the variance of the original variables. The “organic” component (PC1) was composed of TN, TON, APA, and TOC; the “inorganic N” component (PCII) contained NO2, NO3, and NH4+, the “phytoplankton” component (PCIII) was made up of turbidity, TP, and Chl a; DO and temperature were inversely related (PCIV); and salinity was the only parameter included in PCV. A cluster analysis of mean and SD of PG scores resulted in the spatial aggregation of 50 fixed monitoring stations in Florida Bay and Whitewater Bay into six zones of similar influence (ZSI) defined as Eastern Florida Bay. Core Florida Bay, Western Florida Bay, Coot Bay, the Inner Mangrove Fringe, and the Outer Mangrove Fringe. Marked differences in physical, chemical, and biological characteristics among ZSI were illustrated by this technique. Comparison of medians and variability of parameter values among ZSI allowed large-scale generalizations as to underlying differences in water quality in these regions. For example. Fastern Florida Bay had lower salinity, TON, TOC, TP, and Chl a than the Core Bay as a function of differences in freshwater inputs and water residence time. Comparison of medians and variability within ZSI resulted in new hypotheses as to the processes generating these internal patterns. For example, the Core Bay had very high TON, TOC, and NH4+ concentrations but very low NO3−, leading us to postulate the inhibition of nitrification via CO production by TOC photolysis. We believe that this simple, objective approach to spatial analysis of fixed-station monitoring datasets will aid scientists and managers in the interpretation of factors underlying the observed parameter distribution patterns. We also expect that this approach will be useful in focussing attention on specific spatial areas of concern and in generating new ideas for hypothesis testing.


Estuaries | 1999

Seasonal and long-term trends in the water quality of Florida Bay (1989–1997)

Joseph N. Boyer; James W. Fourqurean; Ronald D. Jones

Analysis of 6 yr of monthly water quality data was performed on three distinct zones of Florida Bay: the eastern bay, central bay, and western bay. Each zone was analyzed for trends at intra-annual (seasonal), interannual (oscillation), and long-term (monotonic) scales. the variables TON, TOC, temperature, and TN∶TP ratio had seasonal maxima in the summer rainy season; APA and Chla, indicators of the size and activity of the microplankton tended to have maxima in the fall. In contrast, NO3−, NO2−, NH4+, turbidity, and DOsat, were highest in the winter dry season. There were large changes in some of the water quality variables of Florida Bay over the study period. Salinity and TP concentrations declined baywide while turbidity increased dramatically. Salinity declined in the eastern, central, and western Florida Bay by 13.6‰, 11.6‰, and 5.6‰, respectively. Some of the decrease in the eastern bay could be accounted for by increased freshwater flows from the Everglades. In contrast to most other estuarine systems, increased runoff may have been partially responsible for the decrease in TP concentrations as input concentrations were 0.3–0.5 μM. Turbidity in the eastern bay increased twofold from 1991 to 1996, while in the central and western bays it increased by factors of 20 and 4, respectively. Chla concentrations were particularly dynamic and spatially heterogeneous. In the eastern bay, which makes up roughly half of the surface area of Florida Bay, Chla declined by 0.9 μg l−1 (63%). The hydrographically isolated central bay zone underwent a fivefold increase in phytoplankton biomass from 1989 to 1994, then rapidly declined to previous levels by 1996. In western Florida Bay there was a significant increase in Chla, yet median concentrations of Chla in the water column remained modest (∼2 μg l−1) by most estuarine standards. Only in the central bay did the DIN pool increase substantially (threefold to sixfold). Notably, these changes in turbidity and phytoplankton biomass occurred after the poorly-understood seagrass die-off in 1987. It is likely the death and decomposition of large amounts of seagrass biomass can at least partially explain some of the changes in water quality of Florida Bay, but the connections are temporally disjoint and the process indirect and not well understood.


Estuaries | 1999

Phosphorus and Nitrogen Inputs to Florida Bay: The Importance of the Everglades Watershed

David T. Rudnick; Z. Chen; Daniel L. Childers; Joseph N. Boyer; T. D. Fontaine

A large environmental restoration project designed to improve the hydrological conditions of the Florida Everglades and increase freshwater flow to Florida Bay is underway. Here we explore how changing freshwater inflow to the southern Everglades is likely to change the input of nutrients to Florida Bay. We calculated annual inputs of water, total phosphorus (TP), total nitrogen (TN), and dissolved inorganic nitrogen (DIN) to Everglades National Park (ENP) since the early 1980s. We also examined changes in these nutrient concentrations along transects through the wetland to Florida Bay and the Gulf of Mexico. We found that the interannual variability of the water discharge into ENP greatly exceeded the interannual variability of flow-weighted mean nutrient concentrations in this water. Nutrient inputs to ENP were largely determined by discharge volume. These inputs were high in TN and low in TP; for two ENP watersheds TN averaged 1.5 mg l−1 (0.11 mM) and 0.9 mg l−1 (0.06 mM) and TP averaged 15 μg l−1 (0.47 μM) and 9 μg l−1 (0.28 μM). Both TP and DIN that flowed into ENP wetlands were rapidly removed from the water. Over a 3-km section of Taylor Slough, TP decreased from a flow-weighted mean of 11.6 μg l−1 (0.37 μM) (0.20 μM) and DIN decreased from 240 μg l−1 (17μM) to 36 μ l−1 (2.6 μM). In contrast, TN, which was generally 95% organic N, changed little as it passed through the wetland. This resulted in molar TN:TP ratios exceeding 400 in the wetland. Decreases in TN concentrations only occurred in areas with relatively high P availability, such as the wetlands to the north of ENP and in the mangrove streams of western ENP. Increasing freshwater flow to Florida Bay in an effort to restore the Everglades and Florida Bay ecosystems is thus not likely to increase P inputs from the freshwater Everglades but is likely to increase TN inputs. Based on a nutrient budget of Florida Bay, both N and P inputs from the Gulf of Mexico greatly exceed inputs from the Everglades, as well as inputs from the atmosphere and the Florida Keys. We estimate that the freshwater Everglades contribute <3% of all P inputs and <12% of all N inputs to the bay. Evaluating the effect of ecosystem restoration efforts on Florida Bay requires greater understanding of the interactions of the bay with the Gulf of Mexico and adjacent mangrove ecosystems.


Ecological Applications | 2003

FORECASTING RESPONSES OF SEAGRASS DISTRIBUTIONS TO CHANGING WATER QUALITY USING MONITORING DATA

James W. Fourqurean; Joseph N. Boyer; Michael J. Durako; Lee N. Hefty; Bradley J. Peterson

Extensive data sets on water quality and seagrass distributions in Florida Bay have been assembled under complementary, but independent, monitoring programs. This paper presents the landscape-scale results from these monitoring programs and outlines a method for exploring the relationships between two such data sets. Seagrass species occurrence and abundance data were used to define eight benthic habitat classes from 677 sampling locations in Florida Bay. Water quality data from 28 monitoring stations spread across the Bay were used to construct a discriminant function model that assigned a prob- ability of a given benthic habitat class occurring for a given combination of water quality variables. Mean salinity, salinity variability, the amount of light reaching the benthos, sediment depth, and mean nutrient concentrations were important predictor variables in the discriminant function model. Using a cross-validated classification scheme, this discrimi- nant function identified the most likely benthic habitat type as the actual habitat type in most cases. The model predicted that the distribution of benthic habitat types in Florida Bay would likely change if water quality and water delivery were changed by human engineering of freshwater discharge from the Everglades. Specifically, an increase in the seasonal delivery of freshwater to Florida Bay should cause an expansion of seagrass beds dominated by Ruppia maritima and Halodule wrightii at the expense of the Thalassia testudinum-dominated community that now occurs in northeast Florida Bay. These statistical techniques should prove useful for predicting landscape-scale changes in community com- position in diverse systems where communities are in quasi-equilibrium with environmental drivers.


Microbial Ecology | 2010

Changes in community structure of sediment bacteria along the Florida coastal everglades marsh-mangrove-seagrass salinity gradient.

Makoto Ikenaga; Rafael Guevara; Amanda L. Dean; Cristina Pisani; Joseph N. Boyer

Community structure of sediment bacteria in the Everglades freshwater marsh, fringing mangrove forest, and Florida Bay seagrass meadows were described based on polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) patterns of 16S rRNA gene fragments and by sequencing analysis of DGGE bands. The DGGE patterns were correlated with the environmental variables by means of canonical correspondence analysis. There was no significant trend in the Shannon–Weiner index among the sediment samples along the salinity gradient. However, cluster analysis based on DGGE patterns revealed that the bacterial community structure differed according to sites. Not only were these salinity/vegetation regions distinct but the sediment bacteria communities were consistently different along the gradient from freshwater marsh, mangrove forest, eastern-central Florida Bay, and western Florida Bay. Actinobacteria- and Bacteroidetes/Chlorobi-like DNA sequences were amplified throughout all sampling sites. More Chloroflexi and members of candidate division WS3 were found in freshwater marsh and mangrove forest sites than in seagrass sites. The appearance of candidate division OP8-like DNA sequences in mangrove sites distinguished these communities from those of freshwater marsh. The seagrass sites were characterized by reduced presence of bands belonging to Chloroflexi with increased presence of those bands related to Cyanobacteria, γ-Proteobacteria, Spirochetes, and Planctomycetes. This included the sulfate-reducing bacteria, which are prevalent in marine environments. Clearly, bacterial communities in the sediment were different along the gradient, which can be explained mainly by the differences in salinity and total phosphorus.


Hydrobiologia | 2006

Spatial, geomorphological, and seasonal variability of CDOM in estuaries of the Florida Coastal Everglades

Nagamitsu Maie; Joseph N. Boyer; Chenyong Yang; Rudolf Jaffé

This paper demonstrates the usefulness of fluorescence techniques for long-term monitoring and assessment of the dynamics (sources, transport and fate) of chromophoric dissolved organic matter (CDOM) in highly compartmentalized estuarine regions with non-point water sources. Water samples were collected monthly from a total of 73 sampling stations in the Florida Coastal Everglades (FCE) estuaries during 2001 and 2002. Spatial and seasonal variability of CDOM characteristics were investigated for geomorphologically distinct sub-regions within Florida Bay (FB), the Ten Thousand Islands (TTI), and Whitewater Bay (WWB). These variations were observed in both quantity and quality of CDOM. TOC concentrations in the FCE estuaries were generally higher during the wet season (June–October), reflecting high freshwater loadings from the Everglades in TTI, and a high primary productivity of marine biomass in FB. Fluorescence parameters suggested that the CDOM in FB is mainly of marine/microbial origin, while for TTI and WWB a terrestrial origin from Everglades marsh plants and mangroves was evident. Variations in CDOM quality seemed mainly controlled by tidal exchange/mixing of Everglades freshwater with Florida Shelf waters, tidally controlled releases of CDOM from fringe mangroves, primary productivity of marine vegetation in FB and diagenetic processes such as photodegradation (particularly for WWB). The source and dynamics of CDOM in these subtropical estuaries is complex and found to be influenced by many factors including hydrology, geomorphology, vegetation cover, landuse and biogeochemical processes. Simple, easy to measure, high sample throughput fluorescence parameters for surface waters can add valuable information on CDOM dynamics to long-term water quality studies which can not be obtained from quantitative determinations alone.


Estuaries | 2005

Attenuation of Photosynthetically Available Radiation (PAR) in Florida Bay: Potential for Light Limitation of Primary Producers

Christopher R. Kelble; Peter B. Ortner; Gary L. Hitchcock; Joseph N. Boyer

Light attenuation in marine ecosystems can limit primary production and determine the species composition and abundance of primary producers. In Florida Bay, the importance of understanding the present light environment has heightened as major upstream water management restoration projects have been proposed and some are already being implemented. We analyzed a 2-yr (2001–2003) data set of the light attenuation coefficient (Kt) and its principal components (water, chromophoric dissolved organic matter [CDOM], tripton, phytoplankton) obtained at 40 stations within Florida Bay, calibrated synoptic underway data to produce high spatial resolution maps, examined the potential for light limitation, and quantified the individual effect of each component upon light attenuation. Tripton was the dominant component controlling light attenuation throughout Florida Bay, whereas the contribution of chlorophylla and CDOM to Kt was much smaller in all regions of Florida Bay. It was possible to accurately estimate the light attenuation coefficient from component concentrations, using either a mechanistic or a statistical model with root mean square errors of 0.252 or 0.193 m−1, respectively. Compared to other estuaries, Florida Bay had the lowest overall Kt and the greatest relative contribution from tripton. Comparing the recent data to a study of Florida Bay’s light environment conducted in 1993–1994, we found that overall water clarity in the Bay increased significantly, indicated by a nearly 3-fold decrease in Kv as a result of lower tripton concentrations, although the percent contribution of each of the components to Kt is unchanged. Only the northwest corner of Florida Bay, an area comprised of approximately 8% of the Bay’s total area, was found on average to have sufficient light attenuation to limit the growth of seagrasses. This is much less extensive than in 1993–1994, when seagrass growth was potentially limited by light at over 50% of the stations sampled.


Critical Reviews in Environmental Science and Technology | 2011

The Role of the Everglades Mangrove Ecotone Region (EMER) in Regulating Nutrient Cycling and Wetland Productivity in South Florida

Victor H. Rivera-Monroy; Robert R. Twilley; Stephen E. Davis; Daniel L. Childers; Marc Simard; Randolf Chambers; Rudolf Jaffé; Joseph N. Boyer; David T. Rudnick; Kequi Zhang; Edward Castañeda-Moya; Sharon M.L. Ewe; René M. Price; Carlos Coronado-Molina; Michael S. Ross; Thomas J. Smith; Béatrice Michot; Ehab A. Meselhe; William K. Nuttle; Tiffany G. Troxler; Gregory B. Noe

The authors summarize the main findings of the Florida Coastal Everglades Long-Term Ecological Research (FCE-LTER) program in the EMER, within the context of the Comprehensive Everglades Restoration Plan (CERP), to understand how regional processes, mediated by water flow, control population and ecosystem dynamics across the EMER landscape. Tree canopies with maximum height <3 m cover 49% of the EMER, particularly in the SE region. These scrub/dwarf mangroves are the result of a combination of low soil phosphorus (P < 59 μg P g dw−1) in the calcareous marl substrate and long hydroperiod. Phosphorus limits the EMER and its freshwater watersheds due to the lack of terrigenous sediment input and the phosphorus-limited nature of the freshwater Everglades. Reduced freshwater delivery over the past 50 years, combined with Everglades compartmentalization and a 10 cm rise in coastal sea level, has led to the landward transgression (∼1.5 km in 54 years) of the mangrove ecotone. Seasonal variation in freshwater input strongly controls the temporal variation of nitrogen and P exports (99%) from the Everglades to Florida Bay. Rapid changes in nutrient availability and vegetation distribution during the last 50 years show that future ecosystem restoration actions and land use decisions can exert a major influence, similar to sea level rise over the short term, on nutrient cycling and wetland productivity in the EMER.


Marine Pollution Bulletin | 2010

Epiphyte loads on seagrasses and microphytobenthos abundance are not reliable indicators of nutrient availability in oligotrophic coastal ecosystems

James W. Fourqurean; Meredith F. Muth; Joseph N. Boyer

Despite marked gradients in nutrient availability that control the abundance and species composition of seagrasses in south Florida, and the importance of nutrient availability in controlling abundance and composition of epiphytes on seagrasses in other locations, we did not find that epiphyte load on the dominant seagrass, Thalassia testudinum, or that the relative contribution of algal epiphytes to the epiphyte community, was positively correlated with nutrient availability in the water column or the sediment in oligotrophic seagrass beds. Further, the abundance of microphytobenthos, as indicated by Chlorophyll-a concentration in the sediments, was not directly correlated with concentrations of nutrients in the sediments. Our results suggest that epiphyte and microphytobenthos abundance are not unambiguous indicators of nutrient availability in relatively pristine seagrass environments, and therefore would make poor candidates for indicators of the status and trends of seagrass ecosystems in relatively low-nutrient environments like the Florida Keys.


Wetlands | 2012

Patterns of Soil Bacteria and Canopy Community Structure Related to Tropical Peatland Development

Tiffany G. Troxler; Makoto Ikenaga; Leonard J. Scinto; Joseph N. Boyer; Richard Condit; Rolando Pérez; George D. Gann; Daniel L. Childers

Natural environmental gradients provide important information about the ecological constraints on plant and microbial community structure. In a tropical peatland of Panama, we investigated community structure (forest canopy and soil bacteria) and microbial community function (soil enzyme activities and respiration) along an ecosystem development gradient that coincided with a natural P gradient. Highly structured plant and bacterial communities that correlated with gradients in phosphorus status and soil organic matter content characterized the peatland. A secondary gradient in soil porewater NH4 described significant variance in soil microbial respiration and β-1-4-glucosidase activity. Covariation of canopy and soil bacteria taxa contributed to a better understanding of ecological classifications for biotic communities with applicability for tropical peatland ecosystems of Central America. Moreover, plants and soils, linked primarily through increasing P deficiency, influenced strong patterning of plant and bacterial community structure related to the development of this tropical peatland ecosystem.

Collaboration


Dive into the Joseph N. Boyer's collaboration.

Top Co-Authors

Avatar

Henry O. Briceño

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Ronald D. Jones

Florida International University

View shared research outputs
Top Co-Authors

Avatar

James W. Fourqurean

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Rudolf Jaffé

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David T. Rudnick

South Florida Water Management District

View shared research outputs
Top Co-Authors

Avatar

Christopher R. Kelble

Atlantic Oceanographic and Meteorological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Peter Harlem

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge