Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph N. M. Mol is active.

Publication


Featured researches published by Joseph N. M. Mol.


Trends in Plant Science | 1998

How genes paint flowers and seeds

Joseph N. M. Mol; Erich Grotewold; Ronald Koes

Abstract Mutant analyses have given insight into the various parameters that contribute to flower colour and pattern, which is so important for pollination. One important factor is the accumulation of orange, red and purple anthocyanin pigments in the cell vacuole—patterns arise by cell-specific expression of combinations of regulatory proteins. The overall colour perceived is also influenced by vacuolar pH, co-pigmentation and the shape of the petal cells. Although understanding of the biochemistry and genetics of anthocyanin and flavonol biosynthesis is well developed, this is not the case for pH and cell-shape control.


The Plant Cell | 1999

Molecular Analysis of the anthocyanin2 Gene of Petunia and Its Role in the Evolution of Flower Color

Francesca Quattrocchio; John Wing; Karel van der Woude; Erik Souer; Nick de Vetten; Joseph N. M. Mol; Ronald Koes

The shape and color of flowers are important for plant reproduction because they attract pollinators such as insects and birds. Therefore, it is thought that alterations in these traits may result in the attraction of different pollinators, genetic isolation, and ultimately, (sympatric) speciation. Petunia integrifolia and P. axillaris bear flowers with different shapes and colors that appear to be visited by different insects. The anthocyanin2 (an2) locus, a regulator of the anthocyanin biosynthetic pathway, is the main determinant of color differences. Here, we report an analysis of molecular events at the an2 locus that occur during Petunia spp evolution. We isolated an2 by transposon tagging and found that it encodes a MYB domain protein, indicating that it is a transcription factor. Analysis of P. axillaris subspecies with white flowers showed that they contain an2- alleles with two alternative frameshifts at one site, apparently caused by the insertion and subsequent excision of a transposon. A third an2- allele has a nonsense mutation elsewhere, indicating that it arose independently. The distribution of polymorphisms in an2- alleles suggests that the loss of an2 function and the consequent changes in floral color were not the primary cause for genetic separation of P. integrifolia and P. axillaris. Rather, they were events that occurred late in the speciation process, possibly to reinforce genetic isolation and complete speciation.


The Plant Cell | 1993

Regulatory Genes Controlling Anthocyanin Pigmentation Are Functionally Conserved among Plant Species and Have Distinct Sets of Target Genes.

Francesca Quattrocchio; John Wing; Hans T. C. Leppen; Joseph N. M. Mol; Ronald Koes

In this study, we demonstrate that in petunia at least four regulatory genes (anthocyanin-1 [an1], an2, an4, and an11) control transcription of a subset of structural genes from the anthocyanin pathway by using a combination of RNA gel blot analysis, transcription run-on assays, and transient expression assays. an2- and an11- mutants could be transiently complemented by the maize regulatory genes Leaf color (Lc) or Colorless-1 (C1), respectively, whereas an1- mutants only by Lc and C1 together. In addition, the combination of Lc and C1 induces pigment accumulation in young leaves. This indicates that Lc and C1 are both necessary and sufficient to produce pigmentation in leaf cells. Regulatory pigmentation genes in maize and petunia control different sets of structural genes. The maize Lc and C1 genes expressed in petunia differentially activate the promoters of the chalcone synthase genes chsA and chsJ in the same way that the homologous petunia genes do. This suggests that the regulatory proteins in both species are functionally similar and that the choice of target genes is determined by their promoter sequences. We present an evolutionary model that explains the differences in regulation of pigmentation pathways of maize, petunia, and snapdragon.


The Plant Cell | 2000

anthocyanin1 of Petunia Encodes a Basic Helix-Loop-Helix Protein That Directly Activates Transcription of Structural Anthocyanin Genes

Cornelis Spelt; Francesca Quattrocchio; Joseph N. M. Mol; Ronald Koes

The petunia loci anthocyanin1 (an1), an2, an4, and an11 are required for the transcription of anthocyanin biosynthetic genes in floral organs. The an2 and an11 loci were recently cloned and shown to encode a MYB-domain transcriptional activator and a cytosolic WD40 protein, respectively. Here, we report the isolation of an1 by transposon tagging. an1 encodes a new member of the basic helix-loop-helix family of transcription factors that is functionally and evolutionarily distinct from JAF13, the apparent petunia ortholog of maize RED1 and snapdragon DELILA. We provide genetic evidence that the transcription factors encoded by an1, an2, and an4 operate in an unexpectedly complex regulatory hierarchy. In leaves, ectopic expression of AN2 induces an1 expression, whereas in anthers, an1 expression depends on an4, encoding (or controlling) a MYB protein that is paralogous to AN2. Experiments with transgenic plants expressing a post-translationally controlled AN1–GLUCOCORTICOID RECEPTOR fusion protein indicated that independent of protein synthesis, AN1 directly activates the expression of the dfrA gene encoding the enzyme dihydroflavonol 4-reductase and of Pmyb27 encoding a MYB-domain protein of unknown function.


Current Biology | 2001

Transcriptional and posttranscriptional gene silencing are mechanistically related

Titia Sijen; Irma Vijn; Alexandra Rebocho; Rik van Blokland; Dick Roelofs; Joseph N. M. Mol; Jan M. Kooter

Two distinct gene-silencing phenomena are observed in plants: transcriptional gene silencing (TGS), which involves decreased RNA synthesis because of promoter methylation, and posttranscriptional gene silencing (PTGS), which involves sequence-specific RNA degradation. PTGS is induced by deliberate [1-4] or fortuitous production (R.v.B., unpublished data) of double-stranded RNA (dsRNA). TGS could be the result of DNA pairing [5], but could also be the result of dsRNA, as was shown by the dsRNA-induced inactivation of a transgenic promoter [6]. Here, we show that when targeting flower pigmentation genes in Petunia, transgenes expressing dsRNA can induce PTGS when coding sequences are used and TGS when promoter sequences are taken. For both types of silencing, small RNA species are found, which are thought to be dsRNA decay products [7] and determine the sequence specificity of the silencing process [8, 9]. Furthermore, silencing is accompanied by the methylation of DNA sequences that are homologous to dsRNA. DNA methylation is assumed to be essential for regulating TGS and important for reinforcing PTGS [10]. Therefore, we conclude that TGS and PTGS are mechanistically related. In addition, we show that dsRNA-induced TGS provides an efficient tool to generate gene knockouts, because not only does the TGS of a PTGS-inducing transgene fully revert the PTGS phenotype, but also an endogenous gene can be transcriptionally silenced by dsRNA corresponding to its promoter.


Critical Reviews in Plant Sciences | 1996

Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis

Joseph N. M. Mol; Gareth I. Jenkins; Eberhard Schäfer; David Weiss; Virginia Walbot

Abstract Anthocyanin pigments provide fruits and flowers with their bright red and blue colors and are induced in vegetative tissues by various signals. The biosynthetic pathway probably represents one of the best‐studied examples of higher plant secondary metabolism. It has attracted much attention of plant geneticists because of the dispensable nature of the compounds it produces. Not unexpectedly, several excellent reviews on anthocyanin biosynthesis have been published over the last 5 years (Dooner et al., 1991; Martin and Gerats, 1993a, 1993b; Koes et al., 1994; Holton and Cornish, 1995). These reviews emphasize the late steps of pigment biosynthesis rather than the early and intermediate events of signal perception and transduction. This review is broader and not only covers the identification of components of the anthocyanin signal perception/transduction networks but also provides a description of our current understanding of how they evoke the responses that they do. Progress has derived from a c...


The Plant Cell | 2006

PH4 of Petunia Is an R2R3 MYB Protein That Activates Vacuolar Acidification through Interactions with Basic-Helix-Loop-Helix Transcription Factors of the Anthocyanin Pathway

Francesca Quattrocchio; Walter Verweij; Arthur Kroon; Cornelis Spelt; Joseph N. M. Mol; Ronald Koes

The Petunia hybrida genes ANTHOCYANIN1 (AN1) and AN2 encode transcription factors with a basic-helix-loop-helix (BHLH) and a MYB domain, respectively, that are required for anthocyanin synthesis and acidification of the vacuole in petal cells. Mutation of PH4 results in a bluer flower color, increased pH of petal extracts, and, in certain genetic backgrounds, the disappearance of anthocyanins and fading of the flower color. PH4 encodes a MYB domain protein that is expressed in the petal epidermis and that can interact, like AN2, with AN1 and the related BHLH protein JAF13 in yeast two-hybrid assays. Mutation of PH4 has little or no effect on the expression of structural anthocyanin genes but strongly downregulates the expression of CAC16.5, encoding a protease-like protein of unknown biological function. Constitutive expression of PH4 and AN1 in transgenic plants is sufficient to activate CAC16.5 ectopically. Together with the previous finding that AN1 domains required for anthocyanin synthesis and vacuolar acidification can be partially separated, this suggests that AN1 activates different pathways through interactions with distinct MYB proteins.


Plant Molecular Biology | 2000

Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing.

Mariëlle W. M. Muskens; Adriënne P. A. Vissers; Joseph N. M. Mol; Jan M. Kooter

Transgenes and endogenous genes are sensitive to silencing, in particular when the genes are tandemly repeated. Their expression can be transcriptionally or post-transcriptionally repressed, or both. It is remarkable that very often, two or more genes or parts of the genes are arranged as inverted repeats (IR). Many of such IRs are dominant silencing loci. They can repress the expression of homologous genes elsewhere in the genome in trans which is usually associated with an increase in the level of DNA methylation. Trans-silencing has been explained by DNA-DNA pairing between a repetitive silencing locus and a homologous target locus. However, there is accumulating evidence that the trans effect might be mediated by dsRNA transcribed from the IR (trans)genes. Besides dsRNA-directed DNA methylation, dsRNA in plants as well as in other systems also induces the degradation of homologous RNAs and silence genes post-transcriptionally. These findings indicate that several features associated with gene silencing can be attributed to the activities of dsRNA, which would explain why inverted transgene repeats are such efficient silencing loci.


The Plant Cell | 2002

ANTHOCYANIN1 of Petunia Controls Pigment Synthesis, Vacuolar pH, and Seed Coat Development by Genetically Distinct Mechanisms

Cornelis Spelt; Francesca Quattrocchio; Joseph N. M. Mol; Ronald Koes

ANTHOCYANIN1 (AN1) of petunia is a transcription factor of the basic helix-loop-helix (bHLH) family that is required for the synthesis of anthocyanin pigments. Here, we show that AN1 controls additional aspects of cell differentiation: the acidification of vacuoles in petal cells, and the size and morphology of cells in the seed coat epidermis. We identified an1 alleles, formerly known as ph6, that sustain anthocyanin synthesis but not vacuolar acidification and seed coat morphogenesis. These alleles express truncated proteins lacking the C-terminal half of AN1, including the bHLH domain, at an ∼30-fold higher level than wild-type AN1. An allelic series in which one, two, or three amino acids were inserted into the bHLH domain indicated that this domain is required for both anthocyanin synthesis and vacuolar acidification. These findings show that AN1 controls more aspects of epidermal cell differentiation than previously thought through partially separable domains.


Molecular and Cellular Biology | 1998

Position-Dependent Methylation and Transcriptional Silencing of Transgenes in Inverted T-DNA Repeats: Implications for Posttranscriptional Silencing of Homologous Host Genes in Plants

Maike Stam; Ada Viterbo; Joseph N. M. Mol; Jan M. Kooter

ABSTRACT Posttranscriptional silencing of chalcone synthase (Chs) genes in petunia transformants occurs by introducing T-DNAs that contain a promoter-driven or promoterless Chstransgene. With the constructs we used, silencing occurs only by T-DNA loci which are composed of two or more T-DNA copies that are arranged as inverted repeats (IRs). Since we are interested in the mechanism by which these IR loci induce silencing, we have analyzed different IR loci and nonsilencing single-copy (S) T-DNA loci with respect to the expression and methylation of the transgenes residing in these loci. We show that in an IR locus, the transgenes located proximal to the IR center are much more highly methylated than are the distal genes. A strong silencing locus composed of three inverted T-DNAs bearing promoterless Chs transgenes was methylated across the entire locus. The host Chs genes in untransformed plants were moderately methylated, and no change in methylation was detected when the genes were silenced. Run-on transcription assays showed that promoter-driven transgenes located proximal to the center of a particular IR are transcriptionally more repressed than are the distal genes of the same IR locus. Transcription of the promoterlessChs transgenes could not be detected. In the primary transformant, some of the IR loci were detected together with an unlinked S locus. We observed that the methylation and expression characteristics of the transgenes of these S loci were comparable to those of the partner IR loci, suggesting that there has been cross talk between the two types of loci. Despite the similar features, S loci are unable to induce silencing, indicating that the palindromic arrangement of the Chs transgenes in the IR loci is critical for silencing. Since transcriptionally silenced transgenes in IRs can trigger posttranscriptional silencing of the host genes, our data are most consistent with a model of silencing in which the transgenes physically interact with the homologous host gene(s). The interaction may alter epigenetic features other than methylation, thereby impairing the regular production of mRNA.

Collaboration


Dive into the Joseph N. M. Mol's collaboration.

Top Co-Authors

Avatar

Ronald Koes

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maike Stam

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Souer

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge