Maike Stam
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maike Stam.
Plant Methods | 2007
Max Haring; Sascha Offermann; Tanja Danker; Ina Horst; Christoph Peterhänsel; Maike Stam
BackgroundChromatin remodeling, histone modifications and other chromatin-related processes play a crucial role in gene regulation. A very useful technique to study these processes is chromatin immunoprecipitation (ChIP). ChIP is widely used for a few model systems, including Arabidopsis, but establishment of the technique for other organisms is still remarkably challenging. Furthermore, quantitative analysis of the precipitated material and normalization of the data is often underestimated, negatively affecting data quality.ResultsWe developed a robust ChIP protocol, using maize (Zea mays) as a model system, and present a general strategy to systematically optimize this protocol for any type of tissue. We propose endogenous controls for active and for repressed chromatin, and discuss various other controls that are essential for successful ChIP experiments. We experienced that the use of quantitative PCR (QPCR) is crucial for obtaining high quality ChIP data and we explain why. The method of data normalization has a major impact on the quality of ChIP analyses. Therefore, we analyzed different normalization strategies, resulting in a thorough discussion of the advantages and drawbacks of the various approaches.ConclusionHere we provide a robust ChIP protocol and strategy to optimize the protocol for any type of tissue; we argue that quantitative real-time PCR (QPCR) is the best method to analyze the precipitates, and present comprehensive insights into data normalization.
Nature Reviews Genetics | 2004
Vicki L. Chandler; Maike Stam
Paramutation is a widespread epigenetic phenomenon that was first described in pea and then extensively studied in maize, whereby combining two specific alleles results in a heritable change in the expression of one of the alleles. Far from being restricted to endogenous plant genes, paramutation-like interactions have been described in several kingdoms, in which they can occur between homologous transgenes or between transgenes and homologous endogenous genes at allelic or non-allelic positions. In this review, we discuss potential mechanisms underlying paramutation, compare paramutation to several other trans-sensing phenomena, and speculate on the potential roles and evolutionary implications of these intriguing homology-sensing mechanisms.
Molecular and Cellular Biology | 1998
Maike Stam; Ada Viterbo; Joseph N. M. Mol; Jan M. Kooter
ABSTRACT Posttranscriptional silencing of chalcone synthase (Chs) genes in petunia transformants occurs by introducing T-DNAs that contain a promoter-driven or promoterless Chstransgene. With the constructs we used, silencing occurs only by T-DNA loci which are composed of two or more T-DNA copies that are arranged as inverted repeats (IRs). Since we are interested in the mechanism by which these IR loci induce silencing, we have analyzed different IR loci and nonsilencing single-copy (S) T-DNA loci with respect to the expression and methylation of the transgenes residing in these loci. We show that in an IR locus, the transgenes located proximal to the IR center are much more highly methylated than are the distal genes. A strong silencing locus composed of three inverted T-DNAs bearing promoterless Chs transgenes was methylated across the entire locus. The host Chs genes in untransformed plants were moderately methylated, and no change in methylation was detected when the genes were silenced. Run-on transcription assays showed that promoter-driven transgenes located proximal to the center of a particular IR are transcriptionally more repressed than are the distal genes of the same IR locus. Transcription of the promoterlessChs transgenes could not be detected. In the primary transformant, some of the IR loci were detected together with an unlinked S locus. We observed that the methylation and expression characteristics of the transgenes of these S loci were comparable to those of the partner IR loci, suggesting that there has been cross talk between the two types of loci. Despite the similar features, S loci are unable to induce silencing, indicating that the palindromic arrangement of the Chs transgenes in the IR loci is critical for silencing. Since transcriptionally silenced transgenes in IRs can trigger posttranscriptional silencing of the host genes, our data are most consistent with a model of silencing in which the transgenes physically interact with the homologous host gene(s). The interaction may alter epigenetic features other than methylation, thereby impairing the regular production of mRNA.
The Plant Cell | 2014
Jonathan I. Gent; Thelma F. Madzima; Rechien Bader; Matthew R. Kent; Xiaoyu Zhang; Maike Stam; Karen M. McGinnis; R. Kelly Dawe
Only a small fraction of the maize genome undergoes RNA-directed DNA methylation and, for several characteristics, the chromatin in these areas resembles euchromatin more than heterochromatin. RNA-directed DNA methylation (RdDM) in plants is a well-characterized example of RNA interference-related transcriptional gene silencing. To determine the relationships between RdDM and heterochromatin in the repeat-rich maize (Zea mays) genome, we performed whole-genome analyses of several heterochromatic features: dimethylation of lysine 9 and lysine 27 (H3K9me2 and H3K27me2), chromatin accessibility, DNA methylation, and small RNAs; we also analyzed two mutants that affect these processes, mediator of paramutation1 and zea methyltransferase2. The data revealed that the majority of the genome exists in a heterochromatic state defined by inaccessible chromatin that is marked by H3K9me2 and H3K27me2 but that lacks RdDM. The minority of the genome marked by RdDM was predominantly near genes, and its overall chromatin structure appeared more similar to euchromatin than to heterochromatin. These and other data indicate that the densely staining chromatin defined as heterochromatin differs fundamentally from RdDM-targeted chromatin. We propose that small interfering RNAs perform a specialized role in repressing transposons in accessible chromatin environments and that the bulk of heterochromatin is incompatible with small RNA production.
Plant Molecular Biology | 1995
Roel van Aarssen; Piet Soetaert; Maike Stam; Jan Dockx; Veronique Gossele; Jef Seurinck; Arlette Reynaerts; Marc Cornelissen
Chimaeric PCaMV35Scry genes direct in tobacco mesophyll protoplasts mRNA levels of less than one transcript per cell. We provide evidence that this low cytoplasmic cry IA(b) mRNA level is not due to a rapid turnover but rather results from a marginal import flow of cry messenger into the cytoplasm. Run-on assays indicate that the frequency of transcription initiation is not limiting. However, the cry precursor mRNA carries at least three regions that are recognized as introns. The absence of high cytoplasmic levels of spliced cry mRNAs suggests that these mRNAs are unstable and/or not efficiently made. Point mutations in the 5′ splice site of the most distal intron allows high accumulation levels of the full-length mRNA. This implies that the inefficient formation of full-size mRNA is a major cause of the low expression level of chimaeric cry IA(b) genes in tobacco.
Nature Protocols | 2009
Marieke Louwers; Erik Splinter; Roel van Driel; Wouter de Laat; Maike Stam
Gene regulation in higher eukaryotes frequently involves physical interactions between genomic sequence elements tens of kilobases apart on the same chromosome but can also entail interactions between different chromosomes. Chromosome Conformation Capture (3C) is a powerful tool to identify such interactions. 3C technology is based on formaldehyde crosslinking of chromatin, followed by restriction digestion and intramolecular ligation. Quantitative detection of ligation products by PCR (qPCR; not discussed in this protocol) provides insight into the interaction frequencies between chromosomal fragments and thereby the spatial organization of a genomic region. Detailed 3C protocols have been published for yeast and mammals. However, these protocols cannot simply be transferred to plant tissues. In this paper, we provide a maize-specific 3C protocol and present a general strategy to systematically optimize the protocol for other plants. Once the technique and appropriate controls are established, the 3C procedure (including qPCR) can be completed in 5–7 d.
Molecular Plant | 2009
Maike Stam
Epigenetic gene regulation involves the stable propagation of gene activity states through mitotic, and sometimes even meiotic, cell divisions without changes in DNA sequence. Paramutation is an epigenetic phenomenon involving changes in gene expression that are stably transmitted through mitosis as well as meiosis. These heritable changes are mediated by in trans interactions between homologous DNA sequences on different chromosomes. During these in trans interactions, epigenetic information is transferred from one allele of a gene to another allele of the same gene, resulting in a change in gene expression. Although paramutation was initially discovered in plants, it has recently been observed in mammals as well, suggesting that the mechanisms underlying paramutation might be evolutionarily conserved. Recent findings point to a crucial role for small RNAs in the paramutation process. In mice, small RNAs appear sufficient to induce paramutation, whereas in maize, it seems not to be the only player in the process. In this review, potential mechanisms are discussed in relation to the various paramutation phenomena.
PLOS Genetics | 2013
Christiane Luiza Belele; L. L. Sidorenko; Maike Stam; Rechien Bader; Mario Arteaga-Vazquez; Vicki L. Chandler
Paramutation is a well-studied epigenetic phenomenon in which trans communication between two different alleles leads to meiotically heritable transcriptional silencing of one of the alleles. Paramutation at the b1 locus involves RNA-mediated transcriptional silencing and requires specific tandem repeats that generate siRNAs. This study addressed three important questions: 1) are the tandem repeats sufficient for paramutation, 2) do they need to be in an allelic position to mediate paramutation, and 3) is there an association between the ability to mediate paramutation and repeat DNA methylation levels? Paramutation was achieved using multiple transgenes containing the b1 tandem repeats, including events with tandem repeats of only one half of the repeat unit (413 bp), demonstrating that these sequences are sufficient for paramutation and an allelic position is not required for the repeats to communicate. Furthermore, the transgenic tandem repeats increased the expression of a reporter gene in maize, demonstrating the repeats contain transcriptional regulatory sequences. Transgene-mediated paramutation required the mediator of paramutation1 gene, which is necessary for endogenous paramutation, suggesting endogenous and transgene-mediated paramutation both require an RNA-mediated transcriptional silencing pathway. While all tested repeat transgenes produced small interfering RNAs (siRNAs), not all transgenes induced paramutation suggesting that, as with endogenous alleles, siRNA production is not sufficient for paramutation. The repeat transgene-induced silencing was less efficiently transmitted than silencing induced by the repeats of endogenous b1 alleles, which is always 100% efficient. The variability in the strength of the repeat transgene-induced silencing enabled testing whether the extent of DNA methylation within the repeats correlated with differences in efficiency of paramutation. Transgene-induced paramutation does not require extensive DNA methylation within the transgene. However, increased DNA methylation within the endogenous b1 repeats after transgene-induced paramutation was associated with stronger silencing of the endogenous allele.
Archive | 1994
Joseph N. M. Mol; Rik van Blokland; Pieter de Lange; Maike Stam; Jan M. Kooter
Introduction of antisense and sense transgenes into plants has been widely used to generate mutant phenotypes. Besides their use in fundamental research to determine gene function, antisense and sense transgenes are currently used to modify and improve crop plants. Since 1988, a large number of transgenic plants containing antisense and sense genes have been generated (see Van Blokland et al. 1993 for an overview). Despite the success of these approaches the mechanisms by which antisense and sense genes suppress gene activity are still poorly understood.
Trends in Plant Science | 2016
Blaise Weber; Johan Zicola; Rurika Oka; Maike Stam
Higher eukaryotes typically contain many different cell types, displaying different cellular functions that are influenced by biotic and abiotic cues. The different functions are characterized by specific gene expression patterns mediated by regulatory sequences such as transcriptional enhancers. Recent genome-wide approaches have identified thousands of enhancers in animals, reviving interest in enhancers in gene regulation. Although the regulatory roles of plant enhancers are as crucial as those in animals, genome-wide approaches have only very recently been applied to plants. Here we review characteristics of enhancers at the DNA and chromatin level in plants and other species, their similarities and differences, and techniques widely used for genome-wide discovery of enhancers in animal systems that can be implemented in plants.