Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph Negri is active.

Publication


Featured researches published by Joseph Negri.


Nature Medicine | 2010

Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity

Douglas W. McMillin; Jake Delmore; Ellen Weisberg; Joseph Negri; D Corey Geer; Steffen Klippel; Nicholas Mitsiades; Robert Schlossman; Nikhil C. Munshi; Andrew L. Kung; James D. Griffin; Paul G. Richardson; Kenneth C. Anderson; Constantine S. Mitsiades

Conventional anticancer drug screening is typically performed in the absence of accessory cells of the tumor microenvironment, which can profoundly alter antitumor drug activity. To address this limitation, we developed the tumor cell–specific in vitro bioluminescence imaging (CS-BLI) assay. Tumor cells (for example, myeloma, leukemia and solid tumors) stably expressing luciferase are cultured with nonmalignant accessory cells (for example, stromal cells) for selective quantification of tumor cell viability, in presence versus absence of stromal cells or drug treatment. CS-BLI is high-throughput scalable and identifies stroma-induced chemoresistance in diverse malignancies, including imatinib resistance in leukemic cells. A stroma-induced signature in tumor cells correlates with adverse clinical prognosis and includes signatures for activated Akt, Ras, NF-κB, HIF-1α, myc, hTERT and IRF4; for biological aggressiveness; and for self-renewal. Unlike conventional screening, CS-BLI can also identify agents with increased activity against tumor cells interacting with stroma. One such compound, reversine, shows more potent activity in an orthotopic model of diffuse myeloma bone lesions than in conventional subcutaneous xenografts. Use of CS-BLI, therefore, enables refined screening of candidate anticancer agents to enrich preclinical pipelines with potential therapeutics that overcome stroma-mediated drug resistance and can act in a synthetic lethal manner in the context of tumor-stroma interactions.


Cancer Research | 2009

Antimyeloma Activity of the Orally Bioavailable Dual Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Inhibitor NVP-BEZ235

Douglas W. McMillin; Melissa Ooi; Jake Delmore; Joseph Negri; Patrick Hayden; N. Mitsiades; Jana Jakubikova; Sauveur-Michel Maira; Carlos Garcia-Echeverria; Robert Schlossman; Nikhil C. Munshi; Paul G. Richardson; Kenneth C. Anderson; Constantine S. Mitsiades

The phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway mediates proliferation, survival, and drug resistance in multiple myeloma (MM) cells. Here, we tested the anti-MM activity of NVP-BEZ235 (BEZ235), which inhibits PI3K/Akt/mTOR signaling at the levels of PI3K and mTOR. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric survival assays showed that MM cell lines exhibited dose- and time-dependent decreased viability after exposure to BEZ235 (IC(50), 25-800 nmol/L for 48 hours). MM cells highly sensitive (IC(50), <25 nmol/L) to BEZ235 (e.g., MM.1S, MM.1R, Dox40, and KMS-12-PE) included both lines sensitive and resistant to conventional (dexamethasone, cytotoxic chemotherapeutics) agents. Pharmacologically relevant BEZ235 concentrations (25-400 nmol/L) induced rapid commitment to and induction of MM.1S and OPM-2 cell death. Furthermore, normal donor peripheral blood mononuclear cells were less sensitive (IC(50), >800 nmol/L) than the majority of MM cell lines tested, suggesting a favorable therapeutic index. In addition, BEZ235 was able to target MM cells in the presence of exogenous interleukin-6, insulin-like growth factor-1, stromal cells, or osteoclasts, which are known to protect against various anti-MM agents. Molecular profiling revealed that BEZ235 treatment decreased the amplitude of transcriptional signatures previously associated with myc, ribosome, and proteasome function, as well as high-risk MM and undifferentiated human embryonic stem cells. In vivo xenograft studies revealed significant reduction in tumor burden (P = 0.011) and survival (P = 0.028) in BEZ235-treated human MM tumor-bearing mice. Combinations of BEZ235 with conventional (e.g., dexamethasone and doxorubicin) or novel (e.g., bortezomib) anti-MM agents showed lack of antagonism. These results indicate that BEZ235 merits clinical testing, alone and in combination with other agents, in MM.


Clinical Cancer Research | 2005

Novel Histone Deacetylase Inhibitors in the Treatment of Thyroid Cancer

Constantine S. Mitsiades; Vassiliki Poulaki; Ciaran J. McMullan; Joseph Negri; Galinos Fanourakis; Athina Goudopoulou; Victoria M. Richon; Paul A. Marks; Nicholas Mitsiades

Histone deacetylases (HDAC) and histone acetyltransferases exert opposing enzymatic activities that modulate the degree of acetylation of histones and other intracellular molecular targets, thereby regulating gene expression, cellular differentiation, and survival. HDAC inhibition results in accumulation of acetylated histones and induces differentiation and/or apoptosis in transformed cells. In this study, we characterized the effect of two HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA) and m-carboxycinnamic acid bis-hydroxamide, on thyroid carcinoma cell lines, including lines originating from anaplastic and medullary carcinomas. In these models, both SAHA and m-carboxycinnamic acid bis-hydroxamide induced growth arrest and caspase-mediated apoptosis and increased p21 protein levels, retinoblastoma hypophosphorylation, BH3-interacting domain death agonist cleavage, Bax up-regulation, down-regulation of Bcl-2, A1, and Bcl-xL expression, and cleavage of poly(ADP-ribose) polymerase and caspase-8, -9, -3, -7, and -2. Transfection of Bcl-2 cDNA partially suppressed SAHA-induced cell death. SAHA down-regulated the expression of the apoptosis inhibitors FLIP and cIAP-2 and sensitized tumor cells to cytotoxic chemotherapy and death receptor activation. Our studies provide insight into the tumor type–specific mechanisms of antitumor effects of HDAC inhibitors and a framework for future clinical applications of HDAC inhibitors in patients with thyroid cancer, including histologic subtypes (e.g., anaplastic and medullary thyroid carcinomas) for which limited, if any, therapeutic options are available.


Nature Chemical Biology | 2013

Niche-based screening identifies small-molecule inhibitors of leukemia stem cells

Kimberly A. Hartwell; Peter Miller; Siddhartha Mukherjee; Alissa R. Kahn; Alison L. Stewart; David J. Logan; Joseph Negri; Mildred Duvet; Marcus Järås; Rishi V. Puram; Vlado Dančík; Fatima Al-Shahrour; Thomas Kindler; Zuzana Tothova; Shrikanta Chattopadhyay; Thomas Hasaka; Rajiv Narayan; Mingji Dai; Christina Huang; Sebastian Shterental; Lisa P. Chu; J. Erika Haydu; Jae Hung Shieh; David P. Steensma; Benito Munoz; Joshua Bittker; Alykhan F. Shamji; Paul A. Clemons; Nicola Tolliday; Anne E. Carpenter

Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those compounds that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on target, via inhibition of HMG-CoA reductase. These results illustrate the power of merging physiologically relevant models with high-throughput screening.


Molecular Cancer Therapeutics | 2007

Targeting BRAFV600E in thyroid carcinoma: therapeutic implications

Constantine S. Mitsiades; Joseph Negri; Ciaran J. McMullan; Douglas W. McMillin; Elias Sozopoulos; Galinos Fanourakis; Gerassimos Voutsinas; Sophia Tseleni-Balafouta; Vassiliki Poulaki; David Bryant Batt; Nicholas Mitsiades

B-Raf is an important mediator of cell proliferation and survival signals transduced via the Ras-Raf-MEK-ERK cascade. BRAF mutations have been detected in several tumors, including papillary thyroid carcinoma, but the precise role of B-Raf as a therapeutic target for thyroid carcinoma is still under investigation. We analyzed a panel of 93 specimens and 14 thyroid carcinoma cell lines for the presence of BRAF mutations and activation of the mitogen-activated protein/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. We also compared the effect of a B-Raf small inhibitory RNA construct and the B-Raf kinase inhibitor AAL881 on both B-Raf wild-type and mutant thyroid carcinoma cell lines. We found a high prevalence of the T1799A (V600E) mutation in papillary and anaplastic carcinoma specimens and cell lines. There was no difference in patient age, B-Raf expression, Ki67 immunostaining, or clinical stage at presentation between wild-type and BRAFV600E specimens. Immunodetection of phosphorylated and total forms of MEK and ERK revealed no difference in their phosphorylation between wild-type and BRAFV600E patient specimens or cell lines. Furthermore, a small inhibitory RNA construct targeting the expression of both wild-type B-Raf and B-RafV600E induced a comparable reduction of viability in both wild-type and BRAFV600E mutant cancer cells. Interestingly, AAL881 inhibited MEK and ERK phosphorylation and induced apoptosis preferentially in BRAFV600E-harboring cells than wild-type ones, possibly because of better inhibitory activity against B-RafV600E. We conclude that B-Raf is important for the pathophysiology of thyroid carcinomas irrespective of mutational status. Small molecule inhibitors that selectively target B-RafV600E may provide clinical benefit for patients with thyroid cancer. [Mol Cancer Ther 2007;6(3):1070–8]


Haematologica | 2011

Anti-tumor activity and signaling events triggered by the isothiocyanates, sulforaphane and phenethyl isothiocyanate, in multiple myeloma.

Jana Jakubikova; David N. Cervi; Melissa Ooi; Ki-Hyun Kim; Sabikun Nahar; Steffen Klippel; Dana Cholujova; Merav Leiba; John F. Daley; Jake Delmore; Joseph Negri; Simona Blotta; Douglas W. McMillin; Teru Hideshima; Paul G. Richardson; Sedlák J; Kenneth C. Anderson; Constantine S. Mitsiades

Background Isothiocyanates, a family of phytochemicals found in cruciferous vegetables, have cytotoxic effects against several types of tumor cells. Multiple myeloma is a fatal disease characterized by clonal proliferation of plasma cells in the bone marrow. The growing body of preclinical information on the anti-cancer activity of isothiocyanates led us to investigate their anti-myeloma properties. Design and Methods We evaluated the anti-myeloma activity of the isothiocyanates, sulforaphane and phenethyl isothiocyanate, on a panel of human myeloma cell lines as well as primary myeloma tumor cells. Cell viability, apoptosis, cell cycle alterations and cell proliferation were then analyzed in vitro and in a xenograft mouse model in vivo. The molecular sequelae of isothiocyanate treatment in multiple myeloma cells were evaluated by multiplex analyses using bead arrays and western blotting. Results We observed that sulforaphane and phenylethyl isothiocyanate have activity against myeloma cell lines and patients‘ myeloma cells both in vitro and in vivo using a myeloma xenograft mouse model. Isothiocyanates induced apoptotic death of myeloma cells; depletion of mitochondrial membrane potential; cleavage of PARP and caspases-3 and -9; as well as down-regulation of anti-apoptotic proteins including Mcl-1, X-IAP, c-IAP and survivin. Isothiocyanates induced G2/M cell cycle arrest accompanied by mitotic phosphorylation of histone H3. Multiplex analysis of phosphorylation of diverse components of signaling cascades revealed changes in MAPK activation; increased phosphorylation of c-jun and HSP27; as well as changes in the phosphorylation of Akt, and GSK3α/β and p53. Isothiocyanates suppressed proliferation of myeloma cells alone and when co-cultured with HS-5 stromal cells. Sulforaphane and phenylethyl isothiocyanate enhanced the in vitro anti-myeloma activity of several conventional and novel therapies used in multiple myeloma. Conclusions Our study shows that isothiocyanates have potent anti-myeloma activities and may enhance the activity of other anti-multiple myeloma agents. These results indicate that isothiocyanates may have therapeutic potential in multiple myeloma and provide the preclinical framework for future clinical studies of isothiocyanates in multiple myeloma.


PLOS ONE | 2012

A Chemical Screen Probing the Relationship between Mitochondrial Content and Cell Size

Toshimori Kitami; David J. Logan; Joseph Negri; Thomas Hasaka; Nicola Tolliday; Anne E. Carpenter; Bruce M. Spiegelman; Vamsi K. Mootha

The cellular content of mitochondria changes dynamically during development and in response to external stimuli, but the underlying mechanisms remain obscure. To systematically identify molecular probes and pathways that control mitochondrial abundance, we developed a high-throughput imaging assay that tracks both the per cell mitochondrial content and the cell size in confluent human umbilical vein endothelial cells. We screened 28,786 small molecules and observed that hundreds of small molecules are capable of increasing or decreasing the cellular content of mitochondria in a manner proportionate to cell size, revealing stereotyped control of these parameters. However, only a handful of compounds dissociate this relationship. We focus on one such compound, BRD6897, and demonstrate through secondary assays that it increases the cellular content of mitochondria as evidenced by fluorescence microscopy, mitochondrial protein content, and respiration, even after rigorous correction for cell size, cell volume, or total protein content. BRD6897 increases uncoupled respiration 1.6-fold in two different, non-dividing cell types. Based on electron microscopy, BRD6897 does not alter the percent of cytoplasmic area occupied by mitochondria, but instead, induces a striking increase in the electron density of existing mitochondria. The mechanism is independent of known transcriptional programs and is likely to be related to a blockade in the turnover of mitochondrial proteins. At present the molecular target of BRD6897 remains to be elucidated, but if identified, could reveal an important additional mechanism that governs mitochondrial biogenesis and turnover.


British Journal of Haematology | 2009

In vitro anti-myeloma activity of the Aurora kinase inhibitor VE-465

Joseph Negri; Douglas W. McMillin; Jake Delmore; Nicholas Mitsiades; Patrick Hayden; Steffen Klippel; Teru Hideshima; Dharminder Chauhan; Nikhil C. Munshi; Carolyn A. Buser; John Pollard; Paul G. Richardson; Kenneth C. Anderson; Constantine S. Mitsiades

This study characterized the preclinical anti‐myeloma activity of VE465, a low molecular weight pan‐Aurora kinase inhibitor. After 96‐h drug exposure, several multiple myeloma (MM) cell lines were more sensitive to VE465 compared to non‐malignant cells. The anti‐MM activity of VE465 was maintained in the presence of interleukin‐6 and, interestingly, enhanced by co‐culture with stromal cells. However, primary MM cells were less responsive than cell lines. Combinations with dexamethasone (Dex), doxorubicin (Doxo) and bortezomib showed no antagonism. Our study highlights the potential role of the tumour microenvironment in modulating the activity of this drug class.


British Journal of Haematology | 2011

Molecular and cellular effects of multi-targeted cyclin-dependent kinase inhibition in myeloma: biological and clinical implications

Douglas W. McMillin; Jake Delmore; Joseph Negri; Leutz Buon; Hannah M. Jacobs; Jacob P. Laubach; Jana Jakubikova; Melissa Ooi; Patrick Hayden; Robert Schlossman; Nikhil C. Munshi; Christoph Lengauer; Paul G. Richardson; Kenneth C. Anderson; Constantine S. Mitsiades

Cell cycle regulators, such as cyclin‐dependent kinases (CDKs), are appealing targets for multiple myeloma (MM) therapy given the increased proliferative rates of tumour cells in advanced versus early stages of MM. We hypothesized that a multi‐targeted CDK inhibitor with a different spectrum of activity compared to existing CDK inhibitors could trigger distinct molecular sequelae with therapeutic implications for MM. We therefore studied the small molecule heterocyclic compound NVP‐LCQ195/AT9311 (LCQ195), which inhibits CDK1, CDK2 and CDK5, as well as CDK3 and CDK9. LCQ195 induced cell cycle arrest and eventual apoptotic cell death of MM cells, even at sub‐μmol/l concentrations, spared non‐malignant cells, and overcame the protection conferred to MM cells by stroma or cytokines of the bone marrow milieu. In MM cells, LCQ195 triggered decreased amplitude of transcriptional signatures associated with oncogenesis, drug resistance and stem cell renewal, including signatures of activation of key transcription factors for MM cells e.g. myc, HIF‐1α, IRF4. Bortezomib‐treated MM patients whose tumours had high baseline expression of genes suppressed by LCQ195 had significantly shorter progression‐free and overall survival than those with low levels of these transcripts in their MM cells. These observations provide insight into the biological relevance of multi‐targeted CDK inhibition in MM.


Blood | 2012

Compartment-Specific Bioluminescence Imaging platform for the high-throughput evaluation of antitumor immune function.

Douglas W. McMillin; Jake Delmore; Joseph Negri; Matthew Vanneman; Shohei Koyama; Robert Schlossman; Nikhil C. Munshi; Jacob P. Laubach; Paul G. Richardson; Glenn Dranoff; Kenneth C. Anderson; Constantine S. Mitsiades

Conventional assays evaluating antitumor activity of immune effector cells have limitations that preclude their high-throughput application. We adapted the recently developed Compartment-Specific Bioluminescence Imaging (CS-BLI) technique to perform high-throughput quantification of innate antitumor activity and to show how pharmacologic agents (eg, lenalidomide, pomalidomide, bortezomib, and dexamethasone) and autologous BM stromal cells modulate that activity. CS-BLI-based screening allowed us to identify agents that enhance or inhibit innate antitumor cytotoxicity. Specifically, we identified compounds that stimulate immune effector cells against some tumor targets but suppressed their activity against other tumor cells. CS-BLI offers rapid, simplified, and specific evaluation of multiple conditions, including drug treatments and/or cocultures with stromal cells and highlights that immunomodulatory pharmacologic responses can be heterogeneous across different types of tumor cells. This study provides a framework to identify novel immunomodulatory agents and to prioritize compounds for clinical development on the basis of their effect on antitumor immunity.

Collaboration


Dive into the Joseph Negri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart L Schreiber

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge