Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph R. Nery is active.

Publication


Featured researches published by Joseph R. Nery.


Nature | 2009

Human DNA methylomes at base resolution show widespread epigenomic differences

Ryan Lister; Mattia Pelizzola; Robert H. Dowen; R. David Hawkins; Gary C. Hon; Julian Tonti-Filippini; Joseph R. Nery; Leonard K. Lee; Zhen Ye; Que Minh Ngo; Lee Edsall; Jessica Antosiewicz-Bourget; Ron Stewart; Victor Ruotti; A. Harvey Millar; James A. Thomson; Bing Ren; Joseph R. Ecker

DNA cytosine methylation is a central epigenetic modification that has essential roles in cellular processes including genome regulation, development and disease. Here we present the first genome-wide, single-base-resolution maps of methylated cytosines in a mammalian genome, from both human embryonic stem cells and fetal fibroblasts, along with comparative analysis of messenger RNA and small RNA components of the transcriptome, several histone modifications, and sites of DNA–protein interaction for several key regulatory factors. Widespread differences were identified in the composition and patterning of cytosine methylation between the two genomes. Nearly one-quarter of all methylation identified in embryonic stem cells was in a non-CG context, suggesting that embryonic stem cells may use different methylation mechanisms to affect gene regulation. Methylation in non-CG contexts showed enrichment in gene bodies and depletion in protein binding sites and enhancers. Non-CG methylation disappeared upon induced differentiation of the embryonic stem cells, and was restored in induced pluripotent stem cells. We identified hundreds of differentially methylated regions proximal to genes involved in pluripotency and differentiation, and widespread reduced methylation levels in fibroblasts associated with lower transcriptional activity. These reference epigenomes provide a foundation for future studies exploring this key epigenetic modification in human disease and development.


Nature | 2011

Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells

Ryan Lister; Mattia Pelizzola; Yasuyuki S. Kida; R. David Hawkins; Joseph R. Nery; Gary C. Hon; Jessica Antosiewicz-Bourget; Ronan C. O’Malley; Rosa Castanon; Sarit Klugman; Michael Downes; Ruth T. Yu; Ron Stewart; Bing Ren; James A. Thomson; Ronald M. Evans; Joseph R. Ecker

Induced pluripotent stem cells (iPSCs) offer immense potential for regenerative medicine and studies of disease and development. Somatic cell reprogramming involves epigenomic reconfiguration, conferring iPSCs with characteristics similar to embryonic stem (ES) cells. However, it remains unknown how complete the reestablishment of ES-cell-like DNA methylation patterns is throughout the genome. Here we report the first whole-genome profiles of DNA methylation at single-base resolution in five human iPSC lines, along with methylomes of ES cells, somatic cells, and differentiated iPSCs and ES cells. iPSCs show significant reprogramming variability, including somatic memory and aberrant reprogramming of DNA methylation. iPSCs share megabase-scale differentially methylated regions proximal to centromeres and telomeres that display incomplete reprogramming of non-CG methylation, and differences in CG methylation and histone modifications. Lastly, differentiation of iPSCs into trophoblast cells revealed that errors in reprogramming CG methylation are transmitted at a high frequency, providing an iPSC reprogramming signature that is maintained after differentiation.


Science | 2013

Global Epigenomic Reconfiguration During Mammalian Brain Development

Ryan Lister; Eran A. Mukamel; Joseph R. Nery; Mark A. Urich; Clare A. Puddifoot; Nicholas D. Johnson; Jacinta Lucero; Yun Huang; Andrew J. Dwork; Matthew D. Schultz; Miao Yu; Julian Tonti-Filippini; Holger Heyn; Shijun Hu; Joseph C. Wu; Anjana Rao; Manel Esteller; Chuan He; Fatemeh Haghighi; Terrence J. Sejnowski; M. Margarita Behrens; Joseph R. Ecker

Introduction Several lines of evidence point to a key role for dynamic epigenetic changes during brain development, maturation, and learning. DNA methylation (mC) is a stable covalent modification that persists in post-mitotic cells throughout their lifetime, defining their cellular identity. However, the methylation status at each of the ~1 billion cytosines in the genome is potentially an information-rich and flexible substrate for epigenetic modification that can be altered by cellular activity. Indeed, changes in DNA methylation have been implicated in learning and memory, as well as in age-related cognitive decline. However, little is known about the cell type–specific patterning of DNA methylation and its dynamics during mammalian brain development. The DNA methylation landscape of human and mouse neurons is dynamically reconfigured through development. Base-resolution analysis allowed identification of methylation in the CG and CH context (H = A, C, or T). Unlike other differentiated cell types, neurons accumulate substantial mCH during the early years of life, coinciding with the period of synaptogenesis and brain maturation. Methods We performed genome-wide single-base resolution profiling of the composition, patterning, cell specificity, and dynamics of DNA methylation in the frontal cortex of humans and mice throughout their lifespan (MethylC-Seq). Furthermore, we generated base-resolution maps of 5-hydroxymethylcytosine (hmC) in mammalian brains by TAB-Seq at key developmental stages, accompanied by RNA-Seq transcriptional profiling. Results Extensive methylome reconfiguration occurs during development from fetal to young adult. In this period, coincident with synaptogenesis, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. We uncovered surprisingly complex features of brain cell DNA methylation at multiple scales, first by identifying intragenic methylation patterns in neurons and glia that distinguish genes with cell type–specific activity. Second, we report a novel mCH signature that identifies genes escaping X-chromosome inactivation in neurons. Third, we find >100,000 developmentally dynamic and cell type–specific differentially CG-methylated regions that are enriched at putative regulatory regions of the genome. Finally, whole-genome detection of 5-hydroxymethylcytosine (hmC) at single-base resolution revealed that this mark is present in fetal brain cells at locations that lose CG methylation and become activated during development. CG-demethylation at these hmC-poised loci depends on Tet2 activity. Discussion Whole-genome single-base resolution methylcytosine and hydroxymethylcytosine maps revealed profound changes during frontal cortex development in humans and mice. These results extend our knowledge of the unique role of DNA methylation in brain development and function, and offer a new framework for testing the role of the epigenome in healthy function and in pathological disruptions of neural circuits. Overall, brain cell DNA methylation has unique features that are precisely conserved, yet dynamic and cell-type specific. Epigenetic Brainscape Epigenetic modifications and their potential changes during development are of high interest, but few studies have characterized such differences. Lister et al. (1237905, published online 4 July; see the Perspective by Gabel and Greenberg) report whole-genome base-resolution analysis of DNA cytosine modifications and transcriptome analysis in the frontal cortex of human and mouse brains at multiple developmental stages. The high-resolution mapping of DNA cytosine methylation (5mC) and one of its oxidation derivatives (5hmC) at key developmental stages provides a comprehensive resource covering the temporal dynamics of these epigenetic modifications in neurons compared to glia. The data suggest that methylation marks are dynamic during brain development in both humans and mice. A genome-wide map shows that DNA methylation in neurons and glial cells changes during development in humans and mice. [Also see Perspective by Gabel and Greenberg] DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Widespread dynamic DNA methylation in response to biotic stress

Robert H. Dowen; Mattia Pelizzola; Robert J. Schmitz; Ryan Lister; Jill M. Dowen; Joseph R. Nery; Jack E. Dixon; Joseph R. Ecker

Regulation of gene expression by DNA methylation is crucial for defining cellular identities and coordinating organism-wide developmental programs in many organisms. In plants, modulation of DNA methylation in response to environmental conditions represents a potentially robust mechanism to regulate gene expression networks; however, examples of dynamic DNA methylation are largely limited to gene imprinting. Here we report an unexpected role for DNA methylation in regulation of the Arabidopsis thaliana immune system. Profiling the DNA methylomes of plants exposed to bacterial pathogen, avirulent bacteria, or salicylic acid (SA) hormone revealed numerous stress-induced differentially methylated regions, many of which were intimately associated with differentially expressed genes. In response to SA, transposon-associated differentially methylated regions, which were accompanied by up-regulation of 21-nt siRNAs, were often coupled to transcriptional changes of the transposon and/or the proximal gene. Thus, dynamic DNA methylation changes within repetitive sequences or transposons can regulate neighboring genes in response to SA stress.


Cell | 2013

Epigenomic Analysis of Multilineage Differentiation of Human Embryonic Stem Cells

Wei Xie; Matthew D. Schultz; Ryan Lister; Zhonggang Hou; Nisha Rajagopal; Pradipta Ray; John W. Whitaker; Shulan Tian; R. David Hawkins; Danny Leung; Hongbo Yang; Tao Wang; Ah Young Lee; Scott Swanson; Jiuchun Zhang; Yun Zhu; Audrey Kim; Joseph R. Nery; Mark A. Urich; Samantha Kuan; Chia An Yen; Sarit Klugman; Pengzhi Yu; Kran Suknuntha; Nicholas E. Propson; Huaming Chen; Lee Edsall; Ulrich Wagner; Yan Li; Zhen Ye

Epigenetic mechanisms have been proposed to play crucial roles in mammalian development, but their precise functions are only partially understood. To investigate epigenetic regulation of embryonic development, we differentiated human embryonic stem cells into mesendoderm, neural progenitor cells, trophoblast-like cells, and mesenchymal stem cells and systematically characterized DNA methylation, chromatin modifications, and the transcriptome in each lineage. We found that promoters that are active in early developmental stages tend to be CG rich and mainly engage H3K27me3 upon silencing in nonexpressing lineages. By contrast, promoters for genes expressed preferentially at later stages are often CG poor and primarily employ DNA methylation upon repression. Interestingly, the early developmental regulatory genes are often located in large genomic domains that are generally devoid of DNA methylation in most lineages, which we termed DNA methylation valleys (DMVs). Our results suggest that distinct epigenetic mechanisms regulate early and late stages of ES cell differentiation.


Nature | 2013

Patterns of population epigenomic diversity.

Robert J. Schmitz; Matthew D. Schultz; Mark A. Urich; Joseph R. Nery; Mattia Pelizzola; Ondrej Libiger; Andrew Alix; Richard B. McCosh; Huaming Chen; Nicholas J. Schork; Joseph R. Ecker

Natural epigenetic variation provides a source for the generation of phenotypic diversity, but to understand its contribution to such diversity, its interaction with genetic variation requires further investigation. Here we report population-wide DNA sequencing of genomes, transcriptomes and methylomes of wild Arabidopsis thaliana accessions. Single cytosine methylation polymorphisms are not linked to genotype. However, the rate of linkage disequilibrium decay amongst differentially methylated regions targeted by RNA-directed DNA methylation is similar to the rate for single nucleotide polymorphisms. Association analyses of these RNA-directed DNA methylation regions with genetic variants identified thousands of methylation quantitative trait loci, which revealed the population estimate of genetically dependent methylation variation. Analysis of invariably methylated transposons and genes across this population indicates that loci targeted by RNA-directed DNA methylation are epigenetically activated in pollen and seeds, which facilitates proper development of these structures.


Nature | 2015

Human body epigenome maps reveal noncanonical DNA methylation variation

Matthew D. Schultz; Yupeng He; John W. Whitaker; Manoj Hariharan; Eran A. Mukamel; Danny Leung; Nisha Rajagopal; Joseph R. Nery; Mark A. Urich; Huaming Chen; Shin Lin; Yiing Lin; Inkyung Jung; Anthony D. Schmitt; Siddarth Selvaraj; Bing Ren; Terrence J. Sejnowski; Wei Wang; Joseph R. Ecker

Understanding the diversity of human tissues is fundamental to disease and requires linking genetic information, which is identical in most of an individual’s cells, with epigenetic mechanisms that could have tissue-specific roles. Surveys of DNA methylation in human tissues have established a complex landscape including both tissue-specific and invariant methylation patterns. Here we report high coverage methylomes that catalogue cytosine methylation in all contexts for the major human organ systems, integrated with matched transcriptomes and genomic sequence. By combining these diverse data types with each individuals’ phased genome, we identified widespread tissue-specific differential CG methylation (mCG), partially methylated domains, allele-specific methylation and transcription, and the unexpected presence of non-CG methylation (mCH) in almost all human tissues. mCH correlated with tissue-specific functions, and using this mark, we made novel predictions of genes that escape X-chromosome inactivation in specific tissues. Overall, DNA methylation in several genomic contexts varies substantially among human tissues.


Nature | 2014

Abnormalities in human pluripotent cells due to reprogramming mechanisms

Hong Ma; Robert Morey; Ryan C. O'Neil; Yupeng He; Brittany L. Daughtry; Matthew D. Schultz; Manoj Hariharan; Joseph R. Nery; Rosa Castanon; Karen Sabatini; Rathi D. Thiagarajan; Masahito Tachibana; Eunju Kang; Rebecca Tippner-Hedges; Riffat Ahmed; Nuria Marti Gutierrez; Crystal Van Dyken; Alim Polat; Atsushi Sugawara; Michelle Sparman; Sumita Gokhale; Paula Amato; Don P. Wolf; Joseph R. Ecker; Louise C. Laurent; Shoukhrat Mitalipov

Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the ‘gold standard’, they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies.


Neuron | 2015

Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain

Alisa Mo; Eran A. Mukamel; Fred P. Davis; Chongyuan Luo; Gilbert L. Henry; Serge Picard; Mark A. Urich; Joseph R. Nery; Terrence J. Sejnowski; Ryan Lister; Sean R. Eddy; Joseph R. Ecker; Jeremy Nathans

Neuronal diversity is essential for mammalian brain function but poses a challenge to molecular profiling. To address the need for tools that facilitate cell-type-specific epigenomic studies, we developed the first affinity purification approach to isolate nuclei from genetically defined cell types in a mammal. We combine this technique with next-generation sequencing to show that three subtypes of neocortical neurons have highly distinctive epigenomic landscapes. Over 200,000 regions differ in chromatin accessibility and DNA methylation signatures characteristic of gene regulatory regions. By footprinting and motif analyses, these regions are predicted to bind distinct cohorts of neuron subtype-specific transcription factors. Neuronal epigenomes reflect both past and present gene expression, with DNA hyper-methylation at developmentally critical genes appearing as a novel epigenomic signature in mature neurons. Taken together, our findings link the functional and transcriptional complexity of neurons to their underlying epigenomic diversity.


eLife | 2013

Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis

Katherine N. Chang; Shan Zhong; Matthew T. Weirauch; Gary C. Hon; Mattia Pelizzola; Hai Li; Shao-shan Carol Huang; Robert J. Schmitz; Mark A. Urich; Dwight Kuo; Joseph R. Nery; Hong Qiao; Ally Yang; Abdullah Jamali; Huaming Chen; Trey Ideker; Bing Ren; Ziv Bar-Joseph; Timothy R. Hughes; Joseph R. Ecker

The gaseous plant hormone ethylene regulates a multitude of growth and developmental processes. How the numerous growth control pathways are coordinated by the ethylene transcriptional response remains elusive. We characterized the dynamic ethylene transcriptional response by identifying targets of the master regulator of the ethylene signaling pathway, ETHYLENE INSENSITIVE3 (EIN3), using chromatin immunoprecipitation sequencing and transcript sequencing during a timecourse of ethylene treatment. Ethylene-induced transcription occurs in temporal waves regulated by EIN3, suggesting distinct layers of transcriptional control. EIN3 binding was found to modulate a multitude of downstream transcriptional cascades, including a major feedback regulatory circuitry of the ethylene signaling pathway, as well as integrating numerous connections between most of the hormone mediated growth response pathways. These findings provide direct evidence linking each of the major plant growth and development networks in novel ways. DOI: http://dx.doi.org/10.7554/eLife.00675.001

Collaboration


Dive into the Joseph R. Nery's collaboration.

Top Co-Authors

Avatar

Joseph R. Ecker

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Mark A. Urich

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Rosa Castanon

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Yupeng He

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Huaming Chen

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Bing Ren

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Ryan Lister

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Chongyuan Luo

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Matthew D. Schultz

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge