Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yupeng He is active.

Publication


Featured researches published by Yupeng He.


Nature | 2015

Human body epigenome maps reveal noncanonical DNA methylation variation

Matthew D. Schultz; Yupeng He; John W. Whitaker; Manoj Hariharan; Eran A. Mukamel; Danny Leung; Nisha Rajagopal; Joseph R. Nery; Mark A. Urich; Huaming Chen; Shin Lin; Yiing Lin; Inkyung Jung; Anthony D. Schmitt; Siddarth Selvaraj; Bing Ren; Terrence J. Sejnowski; Wei Wang; Joseph R. Ecker

Understanding the diversity of human tissues is fundamental to disease and requires linking genetic information, which is identical in most of an individual’s cells, with epigenetic mechanisms that could have tissue-specific roles. Surveys of DNA methylation in human tissues have established a complex landscape including both tissue-specific and invariant methylation patterns. Here we report high coverage methylomes that catalogue cytosine methylation in all contexts for the major human organ systems, integrated with matched transcriptomes and genomic sequence. By combining these diverse data types with each individuals’ phased genome, we identified widespread tissue-specific differential CG methylation (mCG), partially methylated domains, allele-specific methylation and transcription, and the unexpected presence of non-CG methylation (mCH) in almost all human tissues. mCH correlated with tissue-specific functions, and using this mark, we made novel predictions of genes that escape X-chromosome inactivation in specific tissues. Overall, DNA methylation in several genomic contexts varies substantially among human tissues.


Nature | 2014

Abnormalities in human pluripotent cells due to reprogramming mechanisms

Hong Ma; Robert Morey; Ryan C. O'Neil; Yupeng He; Brittany L. Daughtry; Matthew D. Schultz; Manoj Hariharan; Joseph R. Nery; Rosa Castanon; Karen Sabatini; Rathi D. Thiagarajan; Masahito Tachibana; Eunju Kang; Rebecca Tippner-Hedges; Riffat Ahmed; Nuria Marti Gutierrez; Crystal Van Dyken; Alim Polat; Atsushi Sugawara; Michelle Sparman; Sumita Gokhale; Paula Amato; Don P. Wolf; Joseph R. Ecker; Louise C. Laurent; Shoukhrat Mitalipov

Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the ‘gold standard’, they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies.


Genome Research | 2013

Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population

Robert J. Schmitz; Yupeng He; Oswaldo Valdés-López; Saad M. Khan; Trupti Joshi; Mark A. Urich; Joseph R. Nery; Brian W. Diers; Dong Xu; Gary Stacey; Joseph R. Ecker

Cytosine DNA methylation is one avenue for passing information through cell divisions. Here, we present epigenomic analyses of soybean recombinant inbred lines (RILs) and their parents. Identification of differentially methylated regions (DMRs) revealed that DMRs mostly cosegregated with the genotype from which they were derived, but examples of the uncoupling of genotype and epigenotype were identified. Linkage mapping of methylation states assessed from whole-genome bisulfite sequencing of 83 RILs uncovered widespread evidence for local methylQTL. This epigenomics approach provides a comprehensive study of the patterns and heritability of methylation variants in a complex genetic population over multiple generations, paving the way for understanding how methylation variants contribute to phenotypic variation.


Nature | 2015

An alternative pluripotent state confers interspecies chimaeric competency

Jun Wu; Daiji Okamura; Mo Li; Keiichiro Suzuki; Chongyuan Luo; Li Ma; Yupeng He; Zhongwei Li; Christopher Benner; Isao Tamura; Marie N. Krause; Joseph R. Nery; Tingting Du; Zhuzhu Zhang; Tomoaki Hishida; Yuta Takahashi; Emi Aizawa; Na Young Kim; Jeronimo Lajara; Pedro Guillen; Josep M. Campistol; Concepcion Rodriguez Esteban; Pablo J. Ross; Alan Saghatelian; Bing Ren; Joseph R. Ecker; Juan Carlos Izpisua Belmonte

Pluripotency, the ability to generate any cell type of the body, is an evanescent attribute of embryonic cells. Transitory pluripotent cells can be captured at different time points during embryogenesis and maintained as embryonic stem cells or epiblast stem cells in culture. Since ontogenesis is a dynamic process in both space and time, it seems counterintuitive that these two temporal states represent the full spectrum of organismal pluripotency. Here we show that by modulating culture parameters, a stem-cell type with unique spatial characteristics and distinct molecular and functional features, designated as region-selective pluripotent stem cells (rsPSCs), can be efficiently obtained from mouse embryos and primate pluripotent stem cells, including humans. The ease of culturing and editing the genome of human rsPSCs offers advantages for regenerative medicine applications. The unique ability of human rsPSCs to generate post-implantation interspecies chimaeric embryos may facilitate our understanding of early human development and evolution.


Cell Stem Cell | 2016

Molecular Criteria for Defining the Naive Human Pluripotent State

Thorold W. Theunissen; Marc Friedli; Yupeng He; Evarist Planet; Ryan C. O’Neil; Styliani Markoulaki; Julien Pontis; Haoyi Wang; Alexandra Iouranova; Michaël Imbeault; Julien Duc; Malkiel A. Cohen; Katherine J. Wert; Rosa Castanon; Zhuzhu Zhang; Yanmei Huang; Joseph R. Nery; Jesse Drotar; Tenzin Lungjangwa; Didier Trono; Joseph R. Ecker; Rudolf Jaenisch

Summary Recent studies have aimed to convert cultured human pluripotent cells to a naive state, but it remains unclear to what extent the resulting cells recapitulate in vivo naive pluripotency. Here we propose a set of molecular criteria for evaluating the naive human pluripotent state by comparing it to the human embryo. We show that transcription of transposable elements provides a sensitive measure of the concordance between pluripotent stem cells and early human development. We also show that induction of the naive state is accompanied by genome-wide DNA hypomethylation, which is reversible except at imprinted genes, and that the X chromosome status resembles that of the human preimplantation embryo. However, we did not see efficient incorporation of naive human cells into mouse embryos. Overall, the different naive conditions we tested showed varied relationships to human embryonic states based on molecular criteria, providing a backdrop for future analysis of naive human pluripotency.


Cell Stem Cell | 2014

The Developmental Potential of iPSCs Is Greatly Influenced by Reprogramming Factor Selection

Yosef Buganim; Styliani Markoulaki; Niek van Wietmarschen; Heather A. Hoke; Tao Wu; Kibibi Ganz; Batool Akhtar-Zaidi; Yupeng He; Brian J. Abraham; David Porubsky; Elisabeth Kulenkampff; Dina A. Faddah; Linyu Shi; Qing Gao; Sovan Sarkar; Malkiel A. Cohen; Johanna Goldmann; Joseph R. Nery; Matthew D. Schultz; Joseph R. Ecker; Andrew Xiao; Richard A. Young; Peter M. Lansdorp; Rudolf Jaenisch

Induced pluripotent stem cells (iPSCs) are commonly generated by transduction of Oct4, Sox2, Klf4, and Myc (OSKM) into cells. Although iPSCs are pluripotent, they frequently exhibit high variation in terms of quality, as measured in mice by chimera contribution and tetraploid complementation. Reliably high-quality iPSCs will be needed for future therapeutic applications. Here, we show that one major determinant of iPSC quality is the combination of reprogramming factors used. Based on tetraploid complementation, we found that ectopic expression of Sall4, Nanog, Esrrb, and Lin28 (SNEL) in mouse embryonic fibroblasts (MEFs) generated high-quality iPSCs more efficiently than other combinations of factors including OSKM. Although differentially methylated regions, transcript number of master regulators, establishment of specific superenhancers, and global aneuploidy were comparable between high- and low-quality lines, aberrant gene expression, trisomy of chromosome 8, and abnormal H2A.X deposition were distinguishing features that could potentially also be applicable to human.


Annual Review of Genomics and Human Genetics | 2015

Non-CG Methylation in the Human Genome

Yupeng He; Joseph R. Ecker

DNA methylation is a chemical modification that occurs predominantly on CG dinucleotides in mammalian genomes. However, recent studies have revealed that non-CG methylation (mCH) is abundant and nonrandomly distributed in the genomes of pluripotent cells and brain cells, and is present at lower levels in many other human cells and tissues. Surprisingly, mCH in pluripotent cells is distinct from that in brain cells in terms of sequence specificity and association with transcription, indicating the existence of different mCH pathways. In addition, several recent studies have begun to reveal the biological significance of mCH in diverse cellular processes. In reprogrammed somatic cells, mCH marks megabase-scale regions that have failed to revert to the pluripotent epigenetic state. In myocytes, promoter mCH accumulation is associated with the transcriptional response to environmental factors. In brain cells, mCH accumulates during the establishment of neural circuits and is associated with Rett syndrome. In this review, we summarize the current understanding of mCH and its possible functional consequences in different biological contexts.


Science | 2017

Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex

Chongyuan Luo; Christopher L. Keown; Laurie Kurihara; Jingtian Zhou; Yupeng He; Junhao Li; Rosa Castanon; Jacinta Lucero; Joseph R. Nery; Justin P. Sandoval; Brian Bui; Terrence J. Sejnowski; Timothy T. Harkins; Eran A. Mukamel; M. Margarita Behrens; Joseph R. Ecker

Methylation and the single neuronal cell The presence or absence of methylation on chromosomal DNA can drive or repress gene expression. Now, a comprehensive map of methylation variation in neuronal cell populations, including a between-species comparison, illustrates how epigenetic diversity plays important roles in neuronal development. Luo et al. examined how DNA methylation is both similar and different within neurons at the single-nucleus level in humans and mice. They identified 16 mouse and 21 human neuronal clusters, with greater complexity of excitatory neurons in deep brain layers than in superficial layers. Science, this issue p. 600 Single-nucleus methylomes distinguish neuron types and predict conserved gene regulatory elements in mice and humans. The mammalian brain contains diverse neuronal types, yet we lack single-cell epigenomic assays that are able to identify and characterize them. DNA methylation is a stable epigenetic mark that distinguishes cell types and marks regulatory elements. We generated >6000 methylomes from single neuronal nuclei and used them to identify 16 mouse and 21 human neuronal subpopulations in the frontal cortex. CG and non-CG methylation exhibited cell type–specific distributions, and we identified regulatory elements with differential methylation across neuron types. Methylation signatures identified a layer 6 excitatory neuron subtype and a unique human parvalbumin-expressing inhibitory neuron subtype. We observed stronger cross-species conservation of regulatory elements in inhibitory neurons than in excitatory neurons. Single-nucleus methylomes expand the atlas of brain cell types and identify regulatory elements that drive conserved brain cell diversity.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Improved regulatory element prediction based on tissue-specific local epigenomic signatures

Yupeng He; David U. Gorkin; Diane E. Dickel; Joseph R. Nery; Rosa Castanon; Ah Young Lee; Yin Shen; Axel Visel; Len A. Pennacchio; Bing Ren; Joseph R. Ecker

Significance In mammals, when and where a gene is transcribed are primarily regulated by the activity of regulatory DNA elements, or enhancers. Genetic mutation disrupting enhancer function is emerging as one of the major causes of human diseases. However, our knowledge remains limited about the location and activity of enhancers in the numerous and distinct cell types and tissues. Here, we develop a computational approach, regulatory element prediction based on tissue-specific local epigenetic marks (REPTILE), to precisely locate enhancers based on genome-wide DNA methylation and histone modification profiling. We systematically tested REPTILE on a variety of human and mouse cell types and tissues. Compared with existing methods, we found that enhancer predictions from REPTILE are more likely to be active in vivo and the predicted locations are more accurate. Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulatory element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared with existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types. REPTILE is available at https://github.com/yupenghe/REPTILE/.


Cell Stem Cell | 2017

Functional Human Oocytes Generated by Transfer of Polar Body Genomes

Hong Ma; Ryan C. O’Neil; Nuria Marti Gutierrez; Manoj Hariharan; Zhuzhu Z. Zhang; Yupeng He; Cengiz Cinnioglu; Refik Kayali; Eunju Kang; Yeonmi Lee; Tomonari Hayama; Amy Koski; Joseph R. Nery; Rosa Castanon; Rebecca Tippner-Hedges; Riffat Ahmed; Crystal Van Dyken; Ying Li; Susan B. Olson; David Battaglia; David M. Lee; Diana H. Wu; Paula Amato; Don P. Wolf; Joseph R. Ecker; Shoukhrat Mitalipov

Oocyte defects lie at the heart of some forms of infertility and could potentially be addressed therapeutically by alternative routes for oocyte formation. Here, we describe the generation of functional human oocytes following nuclear transfer of first polar body (PB1) genomes from metaphase II (MII) oocytes into enucleated donor MII cytoplasm (PBNT). The reconstructed oocytes supported the formation of de novo meiotic spindles and, after fertilization with sperm, meiosis completion and formation of normal diploid zygotes. While PBNT zygotes developed to blastocysts less frequently (42%) than controls (75%), genome-wide genetic, epigenetic, and transcriptional analyses of PBNT and control ESCs indicated comparable numbers of structural variations and markedly similar DNA methylation and transcriptome profiles. We conclude that rescue of PB1 genetic material via introduction into donor cytoplasm may offer a source of oocytes for infertility treatment or mitochondrial replacement therapy for mtDNA disease.

Collaboration


Dive into the Yupeng He's collaboration.

Top Co-Authors

Avatar

Joseph R. Ecker

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Joseph R. Nery

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Bing Ren

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huaming Chen

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Mark A. Urich

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Rosa Castanon

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Matthew D. Schultz

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge