Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph S. Neimat is active.

Publication


Featured researches published by Joseph S. Neimat.


Parkinsonism & Related Disorders | 2014

Subthalamic nucleus deep brain stimulation in early stage Parkinson's disease.

David Charles; Peter E. Konrad; Joseph S. Neimat; Anna L. Molinari; Michael G. Tramontana; Stuart G. Finder; Chandler E. Gill; Mark J. Bliton; Chris Kao; Fenna T. Phibbs; Peter Hedera; Ronald M Salomon; Kevin R. Cannard; Lily Wang; Yanna Song; Thomas L. Davis

BACKGROUNDnDeep brain stimulation (DBS) is an effective and approved therapy for advanced Parkinsons disease (PD), and a recent study suggests efficacy in mid-stage disease. This manuscript reports the results of a pilot trial investigating preliminary safety and tolerability of DBS in early PD.nnnMETHODSnThirty subjects with idiopathic PD (Hoehn & Yahr Stage II off medication), age 50-75, on medication ≥6 months but ≤4 years, and without motor fluctuations or dyskinesias were randomized to optimal drug therapy (ODT) (n = 15) or DBS + ODT (n = 15). Co-primary endpoints were the time to reach a 4-point worsening from baseline in the UPDRS-III off therapy and the change in levodopa equivalent daily dose from baseline to 24 months.nnnRESULTSnAs hypothesized, the mean UPDRS total and part III scores were not significantly different on or off therapy at 24 months. Medication requirements in the DBS + ODT group were lower at all time points with a maximal difference at 18 months. With a few exceptions, differences in neuropsychological functioning were not significant. Two subjects in the DBS + ODT group suffered serious adverse events; remaining adverse events were mild or transient.nnnCONCLUSIONSnThis study demonstrates that subjects with early stage PD will enroll in and complete trials testing invasive therapies and provides preliminary evidence that DBS is well tolerated in early PD. The results of this trial provide the data necessary to design a large, phase III, double-blind, multicenter trial investigating the safety and efficacy of DBS in early PD.


Medical Image Analysis | 2012

CranialVault and its CRAVE tools: A clinical computer assistance system for deep brain stimulation (DBS) therapy

Pierre-François D’Haese; Srivatsan Pallavaram; Rui Li; Michael S. Remple; Chris Kao; Joseph S. Neimat; Peter E. Konrad; Benoit M. Dawant

A number of methods have been developed to assist surgeons at various stages of deep brain stimulation (DBS) therapy. These include construction of anatomical atlases, functional databases, and electrophysiological atlases and maps. But, a complete system that can be integrated into the clinical workflow has not been developed. In this paper we present a system designed to assist physicians in pre-operative target planning, intra-operative target refinement and implantation, and post-operative DBS lead programming. The purpose of this system is to centralize the data acquired a the various stages of the procedure, reduce the amount of time needed at each stage of the therapy, and maximize the efficiency of the entire process. The system consists of a central repository (CranialVault), of a suite of software modules called CRAnialVault Explorer (CRAVE) that permit data entry and data visualization at each stage of the therapy, and of a series of algorithms that permit the automatic processing of the data. The central repository contains image data for more than 400 patients with the related pre-operative plans and position of the final implants and about 10,550 electrophysiological data points (micro-electrode recordings or responses to stimulations) recorded from 222 of these patients. The system has reached the stage of a clinical prototype that is being evaluated clinically at our institution. A preliminary quantitative validation of the planning component of the system performed on 80 patients who underwent the procedure between January 2009 and December 2009 shows that the system provides both timely and valuable information.


computer assisted radiology and surgery | 2010

Effect of brain shift on the creation of functional atlases for deep brain stimulation surgery.

Srivatsan Pallavaram; Benoit M. Dawant; Michael S. Remple; Joseph S. Neimat; Chris Kao; Peter E. Konrad; Pierre-François D’Haese

PurposeIn the recent past many groups have tried to build functional atlases of the deep brain using intra-operatively acquired information such as stimulation responses or micro-electrode recordings. An underlying assumption in building such atlases is that anatomical structures do not move between pre-operative imaging and intra-operative recording. In this study, we present evidences that this assumption is not valid. We quantify the effect of brain shift between pre-operative imaging and intra-operative recording on the creation of functional atlases using intra-operative somatotopy recordings and stimulation response data.MethodsA total of 73 somatotopy points from 24 bilateral subthalamic nucleus (STN) implantations and 52 eye deviation stimulation response points from 17 bilateral STN implantations were used. These points were spatially normalized on a magnetic resonance imaging (MRI) atlas using a fully automatic non-rigid registration algorithm. Each implantation was categorized as having low, medium or large brain shift based on the amount of pneumocephalus visible on post-operative CT. The locations of somatotopy clusters and stimulation maps were analyzed for each category.ResultsThe centroid of the large brain shift cluster of the somatotopy data (posterior, lateral, inferior: 3.06, 11.27, 5.36 mm) was found posterior, medial and inferior to that of the medium cluster (2.90, 13.57, 4.53 mm) which was posterior, medial and inferior to that of the low shift cluster (1.94, 13.92, 3.20 mm). The coordinates are referenced with respect to the mid-commissural point. Euclidean distances between the centroids were 1.68, 2.44 and 3.59 mm, respectively for low-medium, medium-large and low-large shift clusters. We found similar trends for the positions of the stimulation maps. The Euclidian distance between the highest probability locations on the low and medium-large shift maps was 4.06xa0mm.ConclusionThe effect of brain shift in deep brain stimulation (DBS) surgery has been demonstrated using intra-operative somatotopy recordings as well as stimulation response data. The results not only indicate that considerable brain shift happens before micro-electrode recordings in DBS but also that brain shift affects the creation of accurate functional atlases. Therefore, care must be taken when building and using such atlases of intra-operative data and also when using intra-operative data to validate anatomical atlases.


Parkinsonism & Related Disorders | 2012

Deep brain stimulation in early Parkinson's disease: Enrollment experience from a pilot trial

Charles Pd; R.M. Dolhun; Chandler E. Gill; Thomas L. Davis; Mark J. Bliton; Michael G. Tramontana; Ronald M Salomon; Lily Wang; Peter Hedera; Fenna T. Phibbs; Joseph S. Neimat; Peter E. Konrad

BACKGROUNDnDeep brain stimulation (DBS) of the subthalamic nucleus is an accepted therapy for advanced Parkinsons disease (PD). In animal models, pharmacologic ablation and stimulation of the subthalamic nucleus have resulted in clinical improvement and, in some cases, improved survival of dopaminergic neurons. DBS has not been studied in the early stages of PD, but early application should be explored to evaluate safety, efficacy, and the potential to alter disease progression.nnnMETHODSnWe are conducting a prospective, randomized, single-blind clinical trial of optimal drug therapy (ODT) compared to medication plus DBS (ODT + DBS) in subjects with Hoehn & Yahr Stage II idiopathic PD who are without motor fluctuations or dementia. We report here subject screening, enrollment, baseline characteristics, and adverse events.nnnRESULTSn30 subjects (average age 60 ± 6.9 years, average duration of medicine 2.1 ± 1.3 years, average UPDRS-III scores 14.9 on medication and 27.0 off medication) are enrolled in the ongoing study. Twelve of 15 subjects randomized to DBS experienced perioperative adverse events, the majority of which were related to the procedure or device and resolved without sequelae. Frequently reported adverse events included wound healing problems, headache, edema, and confusion.nnnCONCLUSIONnThis report demonstrates that subjects with early stage PD can be successfully recruited, consented and retained in a long-term clinical trial of DBS. Our ongoing pilot investigation will provide important preliminary safety and tolerability data concerning the application of DBS in early stage PD.


The Lancet Psychiatry | 2017

Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial

Paul E. Holtzheimer; Mustafa M. Husain; Sarah H. Lisanby; Stephan F. Taylor; Louis A. Whitworth; Shawn M. McClintock; Konstantin V. Slavin; Joshua A. Berman; Guy M. McKhann; Parag G. Patil; Barry Rittberg; Aviva Abosch; Ananda K. Pandurangi; Kathryn L. Holloway; Raymond W. Lam; Christopher R. Honey; Joseph S. Neimat; Jaimie M. Henderson; Charles DeBattista; Anthony J. Rothschild; Julie G. Pilitsis; Randall Espinoza; Georgios Petrides; Alon Y. Mogilner; Keith Matthews; De Lea Peichel; Robert E. Gross; Clement Hamani; Andres M. Lozano; Helen S. Mayberg

BACKGROUNDnDeep brain stimulation (DBS) of the subcallosal cingulate white matter has shown promise as an intervention for patients with chronic, unremitting depression. To test the safety and efficacy of DBS for treatment-resistant depression, a prospective, randomised, sham-controlled trial was conducted.nnnMETHODSnParticipants with treatment-resistant depression were implanted with a DBS system targeting bilateral subcallosal cingulate white matter and randomised to 6 months of active or sham DBS, followed by 6 months of open-label subcallosal cingulate DBS. Randomisation was computer generated with a block size of three at each site before the site started the study. The primary outcome was frequency of response (defined as a 40% or greater reduction in depression severity from baseline) averaged over months 4-6 of the double-blind phase. A futility analysis was performed when approximately half of the proposed sample received DBS implantation and completed the double-blind phase. At the conclusion of the 12-month study, a subset of patients were followed up for up to 24 months. The study is registered at ClinicalTrials.gov, number NCT00617162.nnnFINDINGSnBefore the futility analysis, 90 participants were randomly assigned to active (n=60) or sham (n=30) stimulation between April 10, 2008, and Nov 21, 2012. Both groups showed improvement, but there was no statistically significant difference in response during the double-blind, sham-controlled phase (12 [20%] patients in the stimulation group vs five [17%] patients in the control group). 28 patients experienced 40 serious adverse events; eight of these (in seven patients) were deemed to be related to the study device or surgery.nnnINTERPRETATIONnThis study confirmed the safety and feasibility of subcallosal cingulate DBS as a treatment for treatment-resistant depression but did not show statistically significant antidepressant efficacy in a 6-month double-blind, sham-controlled trial. Future studies are needed to investigate factors such as clinical features or electrode placement that might improve efficacy.nnnFUNDINGnAbbott (previously St Jude Medical).


Movement Disorders | 2011

Subthalamic Nucleus Neuronal Firing Rate Increases with Parkinson’s Disease Progression

Michael S. Remple; Courtney H. Bradenham; C. Chris Kao; P. David Charles; Joseph S. Neimat; Peter E. Konrad

Parkinsons disease is a neurodegenerative disorder characterized by progressive loss of dopaminergic cells in the central nervous system, in particular the substantia nigra, resulting in an unrelenting loss of motor and nonmotor function. Animal models of Parkinsons disease reveal hyperactive neurons in the subthalamic nucleus that have increased firing rates and bursting activity compared with controls. Although subthalamic nucleus activity has been characterized in patients with advanced‐stage Parkinsons disease, it has not been described in patients with early‐stage Parkinsons disease. Here we present the results of subthalamic nucleus neuronal recordings from patients with early‐stage Parkinsons disease (Hoehn and Yahr stage II) enrolled in an ongoing clinical trial compared with recordings from age‐ and sex‐matched patients with advanced Parkinsons disease. Subthalamic nucleus neurons had a significantly lower firing rate in early versus advanced Parkinsons disease (28.7 vs 36.3 Hz; P < .01). The overall activity of the subthalamic nucleus was also significantly lower in early versus late Parkinsons disease, as measured by background neuronal noise (12.4 vs 14.0 mV; P < .05). No significant difference was identified between groups in the bursting or variability of neuronal firing in the subthalamic nucleus, as measured by a burst index or the interspike interval coefficient of variability. The results suggest that neuronal firing in the subthalamic nucleus increases with Parkinsons disease progression.


international conference on robotics and automation | 2015

Concentric Tube Robots as Steerable Needles: Achieving Follow-the-Leader Deployment

Hunter B. Gilbert; Joseph S. Neimat; Robert J. Webster

Concentric tube robots can enable new clinical interventions if they are able to pass through soft tissue, deploy along desired paths through open cavities, or travel along winding lumens. These behaviors require the robot to deploy in such a way that the curved shape of its shaft remains unchanged as the tip progresses forward (i.e., “follow-the-leader” deployment). Follow-the-leader deployment is challenging for concentric tube robots due to elastic (and particularly torsional) coupling between the tubes that form the robot. However, as we show in this paper, follow-the-leader deployment is possible, provided that tube precurvatures and deployment sequences are appropriately selected. We begin by defining follow-the-leader deployment and providing conditions that must be satisfied for a concentric tube robot to achieve it. We then examine several useful special cases of follow-the-leader deployment, showing that both circular and helical precurvatures can be employed, and provide an experimental illustration of the helical case. We also explore approximate follow-the-leader behavior and provide a metric for the similarity of a general deployment to a follow-the-leader deployment. Finally, we consider access to the hippocampus in the brain to treat epilepsy, as a motivating clinical example for follow-the-leader deployment.


Experimental Brain Research | 2005

Timing and direction selectivity of subthalamic and pallidal neurons in patients with Parkinson disease

Ziv Williams; Joseph S. Neimat; G. Rees Cosgrove; Emad N. Eskandar

Current models of basal ganglia function suggest that some manifestations of Parkinson disease (PD) arise from abnormal activity and decreased selectivity of neurons in the subthalamic nucleus (STN) and globus pallidus internus (Gpi). Our goal was to examine the timing and direction selectivity of neuronal activity relative to visually guided movements in the STN and Gpi of patients with PD. Recordings were made from 152xa0neurons in the STN and 33xa0neurons in the Gpi of awake subjects undergoing surgery for PD. Corresponding EMG data were obtained for half the cells. We employed a structured behavioral task in which the subjects used a joystick to guide a cursor to one of four targets displayed on a monitor. Each direction was tested over multiple trials. Movement-related modulation of STN activity began on average 264±10xa0ms before movement initiation and 92±13xa0ms before initial EMG activity, while modulation of Gpi activity began 204±21xa0ms before overt movement initiation. In the STN, 40% of cells demonstrated perimovement activity, and of these 64% were directionally selective. In Gpi, 45% of cells showed perimovement activity of which 80% were selective. In both nuclei, directionally selective cells had significantly lower baseline firing rates than nonselective cells (41±5 vs 59±4xa0spikes/s in STN, and 50±9 vs 74±15xa0spikes/s in Gpi). These results suggest that STN activity occurs earlier than previously reported, and that higher neuronal firing rates maybe associated with decreased direction selectivity in PD patients.


Parkinsonism & Related Disorders | 2013

Treating post-traumatic tremor with deep brain stimulation: Report of five cases

Neil M. Issar; Peter Hedera; Fenna T. Phibbs; Peter E. Konrad; Joseph S. Neimat

BACKGROUNDnPost-traumatic tremor is one of the most common movement disorders resulting from severe head trauma. However, literature regarding successful deep brain stimulation (DBS) treatment is scarce, resulting in ambiguity regarding the optimal lead location. Most cases support the ventral intermediate nucleus, but there is evidence to defend DBS of the zona incerta, ventral oralis anterior/posterior, and/or a combination of these targets. We report five patients with disabling post-traumatic tremor treated with DBS of the ventral intermediate nucleus and of the globus pallidus internus.nnnMETHODSnPatients were referred to the Vanderbilt Movement Disorders Division, and surgical intervention was determined by a DBS Multidisciplinary Committee. Standard DBS procedure was followed.nnnRESULTSnPatients 1-4 sustained severe diffuse axonal injuries. Patients 1-3 underwent unilateral ventral intermediate nucleus DBS for contralateral tremor, while Patient 4 underwent bilateral ventral intermediate nucleus DBS. Patients 1-3 experienced good tremor reduction, while Patient 4 experienced moderate tremor reduction with some dystonic posturing of the hands. Patient 5 had dystonic posturing of the right upper extremity with tremor of the left upper extremity. He was treated with bilateral DBS of the globus pallidus internus and showed good tremor reduction at follow-up.nnnCONCLUSIONnUnilateral or bilateral DBS of the ventral intermediate nucleus and bilateral DBS of the globus pallidus internus may be effective and safe treatment modalities for intractable post-traumatic tremor. Further studies are needed to clarify the optimal target for surgical treatment of post-traumatic tremor.


Journal of Cognitive Neuroscience | 2016

Dissociable effects of dopamine on the initial capture and the reactive inhibition of impulsive actions in parkinson's disease

Nelleke C. van Wouwe; Kristen Kanoff; Daniel O. Claassen; Charis A. Spears; Joseph S. Neimat; Wery P. M. van den Wildenberg; Scott A. Wylie

Dopamine plays a key role in a range of action control processes. Here, we investigate how dopamine depletion caused by Parkinson disease (PD) and how dopamine restoring medication modulate the expression and suppression of unintended action impulses. Fifty-five PD patients and 56 healthy controls (HCs) performed an action control task (Simon task). PD patients completed the task twice, once withdrawn from dopamine medications and once while taking their medications. PD patients experienced similar susceptibility to making fast errors in conflict trials as HCs, but PD patients were less proficient compared with HCs at suppressing incorrect responses. Administration of dopaminergic medications had no effect on impulsive error rates but significantly improved the proficiency of inhibitory control in PD patients. We found no evidence that dopamine precursors and agonists affected action control in PD differently. Additionally, there was no clear evidence that individual differences in baseline action control (off dopamine medications) differentially responded to dopamine medications (i.e., no evidence for an inverted U-shaped performance curve). Together, these results indicate that dopamine depletion and restoration therapies directly modulate the reactive inhibitory control processes engaged to suppress interference from the spontaneously activated response impulses but exert no effect on an individuals susceptibility to act on impulses.

Collaboration


Dive into the Joseph S. Neimat's collaboration.

Top Co-Authors

Avatar

Peter E. Konrad

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott A. Wylie

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael S. Remple

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Peter Hedera

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Kao

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar

David Charles

Vanderbilt University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge