Peter E. Konrad
Vanderbilt University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter E. Konrad.
Journal of Biomedical Optics | 2005
Jonathon D. Wells; Chris Kao; E. Duco Jansen; Peter E. Konrad; Anita Mahadevan-Jansen
A novel method for damage-free, artifact-free stimulation of neural tissue using pulsed, low-energy infrared laser light is presented. Optical stimulation elicits compound nerve and muscle potentials similar to responses obtained with conventional electrical neural stimulation in a rat sciatic nerve model. Stimulation and damage thresholds were determined as a function of wavelength using a tunable free electron laser source (lambda = 2 to 10 microm) and a solid state holmium:YAG laser (lambda = 2.12 microm). Threshold radiant exposure required for stimulation varies with wavelength from 0.312 Jcm2 (lambda = 3 microm) to 1.22 Jcm2 (lambda = 2.1 microm). Histological analysis indicates no discernable thermal damage with suprathreshold stimulation. The largest damage/stimulation threshold ratios (>6) were at wavelengths corresponding to valleys in the IR spectrum of soft tissue absorption (4 and 2.1 microm). Furthermore, optical stimulation can be used to generate a spatially selective response in small fascicles of the sciatic nerve that has significant advantages (e.g., noncontact, spatial resolution, lack of stimulation artifact) over conventional electrical methods in diagnostic and therapeutic procedures in neuroscience, neurology, and neurosurgery.
Optics Letters | 2005
Jonathon D. Wells; Chris Kao; Karthik Mariappan; Jeffrey Albea; E. Duco Jansen; Peter E. Konrad; Anita Mahadevan-Jansen
For more than a century, the traditional method of stimulating neural activity has been based on electrical methods, and it remains the gold standard to date. We report a technological breakthrough in neural activation in which low-level, pulsed infrared laser light is used to elicit compound nerve and muscle potentials in mammalian peripheral nerve in vivo. Optically induced neural action potentials are spatially precise, artifact free, and damage free and are generated by use of energies well below tissue ablation threshold. Thus optical stimulation presents a simple yet novel approach to contact-free in vivo neural activation that has major implications for clinical neurosurgery, basic neurophysiology, and neuroscience.
Journal of Neuroscience Methods | 2007
Jonathon D. Wells; Peter E. Konrad; Chris Kao; E. Duco Jansen; Anita Mahadevan-Jansen
Transient optical neural stimulation has previously been shown to elicit highly controlled, artifact-free potentials within the nervous system in a non-contact fashion without resulting in damage to tissue. This paper presents the physiologic validity of elicited nerve and muscle potentials from pulsed laser induced stimulation of the peripheral nerve in a comparative study with the standard method of electrically evoked potentials. Herein, the fundamental physical properties underlying the two techniques are contrasted. Key laser parameters for efficient optical stimulation of the peripheral nerve are detailed. Strength response curves are shown to be linear for each stimulation modality, although fewer axons can be recruited with optically evoked potentials. Results compare the relative transient energy requirements for stimulation using each technique and demonstrate that optical methods result in highly selective functional nerve stimulation. Adjacent stimulation and recording of compound nerve potentials in their entirety from optical and electrical stimulation are presented, with optical responses shown to be free of any stimulation artifact. Thus, use of a pulsed laser exhibits distinct advantages when compared to standard electrical means for excitation of muscle potentials in the peripheral nerve in the research domain and possibly for clinical diagnostics in the future.
IEEE Transactions on Medical Imaging | 2005
Pierre-François D'Haese; Ebru Cetinkaya; Peter E. Konrad; Chris Kao; Benoit M. Dawant
In current practice, optimal placement of deep-brain stimulators (DBSs) used to treat movement disorders in patients with Parkinsons disease and essential tremor is an iterative procedure. A target is chosen preoperatively based on anatomical landmarks identified on magnetic resonance images. This point is used as an initial position that is refined intraoperatively using both microelectrode recordings and macrostimulation. In this paper, we report on our current progress toward developing a system for the computer-assisted preoperative selection of target points and for the intraoperative adjustment of these points. The system consists of a deformable atlas of optimal target points that can be used to select automatically the preoperative target, of an electrophysiological atlas, and of an intraoperative interface. Results we have obtained show that automatic prediction of target points is an achievable goal. Our results also indicate that electrophysiological information could be used to resolve structures not visible in anatomic images, thus improving both preoperative and intraoperative guidance. Our intraoperative system has reached the stage of a working prototype and we compare targeting accuracy as well as the number of paths needed to reach the targets with our system and with the method in current clinical use.
Stereotactic and Functional Neurosurgery | 2005
J. Michael Fitzpatrick; Peter E. Konrad; Chris Nickele; Ebru Cetinkaya; Chris Kao
In this study, a new system was evaluated for implanting deep-brain stimulators based on a one-piece platform for each trajectory customized from a preoperative planning image. During surgery, the platform is attached to skull-implanted posts that extend through the scalp. The platform acts as a miniature stereotactic frame to provide guidance for parallel cannulas as they are advanced through a burr hole to the target. Accuracy is determined from a postoperative CT. For each implantation, the distance between the position observed in the postoperative image and the position calculated relative to the platform from the preoperative image is our measure of error. Because this measure incorporates the surgical error of electrode anchoring, brain shift between preoperative and postoperative scanning, and error in the measurement of the position of the electrode in CT, it will tend to overestimate the true error. The mean error was 2.8 mm for 20 implantations. These data reflect favorably the accuracy of this system when compared with others.
Parkinsonism & Related Disorders | 2014
David Charles; Peter E. Konrad; Joseph S. Neimat; Anna L. Molinari; Michael G. Tramontana; Stuart G. Finder; Chandler E. Gill; Mark J. Bliton; Chris Kao; Fenna T. Phibbs; Peter Hedera; Ronald M Salomon; Kevin R. Cannard; Lily Wang; Yanna Song; Thomas L. Davis
BACKGROUND Deep brain stimulation (DBS) is an effective and approved therapy for advanced Parkinsons disease (PD), and a recent study suggests efficacy in mid-stage disease. This manuscript reports the results of a pilot trial investigating preliminary safety and tolerability of DBS in early PD. METHODS Thirty subjects with idiopathic PD (Hoehn & Yahr Stage II off medication), age 50-75, on medication ≥6 months but ≤4 years, and without motor fluctuations or dyskinesias were randomized to optimal drug therapy (ODT) (n = 15) or DBS + ODT (n = 15). Co-primary endpoints were the time to reach a 4-point worsening from baseline in the UPDRS-III off therapy and the change in levodopa equivalent daily dose from baseline to 24 months. RESULTS As hypothesized, the mean UPDRS total and part III scores were not significantly different on or off therapy at 24 months. Medication requirements in the DBS + ODT group were lower at all time points with a maximal difference at 18 months. With a few exceptions, differences in neuropsychological functioning were not significant. Two subjects in the DBS + ODT group suffered serious adverse events; remaining adverse events were mild or transient. CONCLUSIONS This study demonstrates that subjects with early stage PD will enroll in and complete trials testing invasive therapies and provides preliminary evidence that DBS is well tolerated in early PD. The results of this trial provide the data necessary to design a large, phase III, double-blind, multicenter trial investigating the safety and efficacy of DBS in early PD.
Medical Image Analysis | 2012
Pierre-François D’Haese; Srivatsan Pallavaram; Rui Li; Michael S. Remple; Chris Kao; Joseph S. Neimat; Peter E. Konrad; Benoit M. Dawant
A number of methods have been developed to assist surgeons at various stages of deep brain stimulation (DBS) therapy. These include construction of anatomical atlases, functional databases, and electrophysiological atlases and maps. But, a complete system that can be integrated into the clinical workflow has not been developed. In this paper we present a system designed to assist physicians in pre-operative target planning, intra-operative target refinement and implantation, and post-operative DBS lead programming. The purpose of this system is to centralize the data acquired a the various stages of the procedure, reduce the amount of time needed at each stage of the therapy, and maximize the efficiency of the entire process. The system consists of a central repository (CranialVault), of a suite of software modules called CRAnialVault Explorer (CRAVE) that permit data entry and data visualization at each stage of the therapy, and of a series of algorithms that permit the automatic processing of the data. The central repository contains image data for more than 400 patients with the related pre-operative plans and position of the final implants and about 10,550 electrophysiological data points (micro-electrode recordings or responses to stimulations) recorded from 222 of these patients. The system has reached the stage of a clinical prototype that is being evaluated clinically at our institution. A preliminary quantitative validation of the planning component of the system performed on 80 patients who underwent the procedure between January 2009 and December 2009 shows that the system provides both timely and valuable information.
Seizure-european Journal of Epilepsy | 2001
Anthony J. Cmelak; Bassel Abou-Khalil; Peter E. Konrad; Dennis M. Duggan; Robert J. Maciunas
The successful surgical treatment of medically refractory epilepsy is based on one of three different principles: (1) elimination of the epileptic focus, (2) interruption of the pathways of neural propagation, and (3) increasing the seizure threshold through cerebral lesions or electrical stimulation. Temporal lobe epilepsy, being the most common focal epilepsy, may ultimately require temporal lobectomy. This is a case report of a 36-year-old male with drug-resistant right mesial temporal lobe epilepsy who failed to obtain seizure control after stereotactic radiosurgery to the seizure focus. Complex-partial seizures occurred 6-7 times monthly, and consisted of a loss of awareness followed by involuntary movements of the right arm. EEG/CC TV monitoring indicated a right mesial temporal lobe focus, which was corroborated by decreased uptake in the right temporal lobe by FDG-PET and by MRI findings of right hippocampal sclerosis. Stereotactic radiosurgery was performed with a 4MV linac, utilizing three isocenters with collimator sizes of 10, 10, and 7 mm respectively. A dose of 1500 cGy (max dose 2535 cGy) was delivered in a single fraction to the patients right amygdala and hippocampus. There were no acute complications. Following radiosurgery the patients seizures were improved in both frequency and intensity for approximately 3 months. Antiepileptic medications were continued. Thereafter, seizures increased in both frequency and intensity, occurring 10-20 times monthly. At 1 year post radiosurgery, standard right temporal lobectomy including amygdalohippocampectomy was performed with subsequent resolution of complex-partial seizures. Histopathology of the resected temporal lobe revealed hippocampal cell loss and fibrillary astrocytosis, consistent with hippocampal sclerosis. No radiation-induced histopathologic changes were seen. We conclude that low-dose radiosurgery doses temporarily changed the intensity and character of seizure activity, but actually increased seizure activity long-term. If radiosurgery is to be an effective alternative to temporal lobectomy for medically intractable temporal lobe epilepsy, higher radiosurgery doses will be required. The toxicity and efficacy of higher-dose radiosurgery is currently under investigation.
Neurosurgery | 1987
Peter E. Konrad; Willis A. Tacker; Levy Wj; Reedy Dp; Cook; L.A. Geddes
Motor evoked potentials (MEPs) in cats, rats, and humans have been reported. They appear promising as a test of central nervous system function, and they are sensitive not only to mechanical injury but also to ischemia. In mechanical trauma, the peripheral nerve response is much more sensitive to damage than the cord response, with a lower threshold and an earlier disappearance. We are reporting that the MEP can also be produced in the dog and that, under conditions of cardiac arrest induced by fibrillation, the peripheral nerve response disappears first at about 30 seconds and then the spinal cord response disappears at about 10 to 13 minutes. The late disappearance of the spinal cord response raises serious questions about its role as an adequate injury monitor. The most useful warning feature of the spinal cord response is an increase in amplitude during the critical first 2 minutes of arrest. Latency changes in the cord and peripheral nerve response did not seem as useful as amplitude changes in terms of providing adequate detection of injury. We also evaluated the peripheral nerve signals to determine whether they are partially volume-conducted weak muscle responses, and evidence substantiates their nonmuscle origin.
Journal of Biomedical Optics | 2009
Austin R. Duke; Jonathan M. Cayce; Jonathan D. Malphrus; Peter E. Konrad; Anita Mahadevan-Jansen; E. Duco Jansen
Low-intensity, pulsed infrared light provides a novel nerve stimulation modality that avoids the limitations of traditional electrical methods such as necessity of contact, presence of a stimulation artifact, and relatively poor spatial precision. Infrared neural stimulation (INS) is, however, limited by a 2:1 ratio of threshold radiant exposures for damage to that for stimulation. We have shown that this ratio is increased to nearly 6:1 by combining the infrared pulse with a subthreshold electrical stimulus. Our results indicate a nonlinear relationship between the subthreshold depolarizing electrical stimulus and additional optical energy required to reach stimulation threshold. The change in optical threshold decreases linearly as the delay between the electrical and optical pulses is increased. We have shown that the high spatial precision of INS is maintained for this combined stimulation modality. Results of this study will facilitate the development of applications for infrared neural stimulation, as well as target the efforts to uncover the mechanism by which infrared light activates neural tissue.