Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph Sirdaarta is active.

Publication


Featured researches published by Joseph Sirdaarta.


Pharmacognosy Magazine | 2015

The potential of selected Australian medicinal plants with anti-Proteus activity for the treatment and prevention of rheumatoid arthritis

Ian Edwin Cock; V. Winnett; Joseph Sirdaarta; Ben Matthews

Background: A wide variety of herbal medicines are used in indigenous Australian traditional medicinal systems to treat rheumatoid arthritis (RA) and inflammation. The current study was undertaken to test the ability of a panel of Australian plants with a history of the ethnobotanical usage in the treatment of inflammation for the ability to block the microbial trigger of RA. Materials and Methods: One hundred and six extracts from 40 plant species were investigated for the ability to inhibit the growth of the bacterial trigger of RA (Proteus mirabilis). The extracts were tested for toxicity in the Artemia nauplii bioassay. The most potent inhibitor of P. mirabilis growth was further analyzed by reversed-phase high performance liquid chromatography (RP-HPLC) coupled to high accuracy time-of-flight (TOF) mass spectroscopy. Results: Sixty-five of the 106 extracts tested (61.3%) inhibited the growth of P. The Aleurites moluccanus, Datura leichardtii, Eucalyptus major, Leptospermum bracteata, L. juniperium, Macadamia integriflora nut, Melaleuca alternifolia, Melaleuca quinquenervia, Petalostigma pubescens, P. triloculorae, P. augustifolium, Scaevola spinescens, Syzygiumaustrale, and Tasmannia lanceolata extracts were determined to be the most effective inhibitors of P. mirabilis growth, with minimum inhibitory concentration (MIC) values generally significantly below 1000 μg/ml. T. lanceolata fruit extracts were the most effective P. mirabilis growth inhibitors, with a MIC values of 11 and 126 μg/ml for the methanolic and aqueous extracts, respectively. Subsequent analysis of the T. lanceolata fruit extracts by RP-HPLC coupled to high-resolution TOF mass spectroscopy failed to detect resveratrol in either T. lanceolata fruit extract. However, the resveratrol glycoside piceid and 2 combretastatin stilbenes (A-1 and A-4) were detected in both T. lanceolata fruit extracts. With the exception of the Eucalyptus and Syzygium extracts, all extracts exhibiting Proteus inhibitory activity were also shown to be nontoxic, or of low toxicity in the Artemia nauplii bioassay. Conclusions: The low toxicity of these extracts and their inhibitory bioactivity against Proteus spp. indicate their potential in blocking the onset of rheumatoid arthritis.


Phytotherapy Research | 2010

Effect of Aloe barbadensis Miller Juice on oxidative stress biomarkers in aerobic cells using Artemia franciscana as a model

Joseph Sirdaarta; Ian Edwin Cock

This study reports on the induction of oxidative stress in aerobic cell systems by Aloe barbadensis Miller (Aloe vera) juice using the salt water crustacean Artemia franciscana as a model. A consistent pattern was observed in which Artemia franciscana nauplii responded to Aloe vera juice exposure with a decrease in the overall activity of redox related enzymes. Exposure of Artemia franciscana to sub‐lethal levels of Aloe vera juice resulted in a decreased activity of thioredoxin reductase, glutathione reductase and glutathione peroxidase by 34% (66% enzymatic activity), 79% (21% enzymatic activity) and 90% (10% enzymatic activity), respectively. Similarly apparent was the trend whereby the co‐exposure of the nauplii to vitamin E counteracted this effect. For each of the biomarker enzymes tested, vitamin E co‐exposure resulted in enzyme activities closer to the control value (78%, 56% and 32% of control enzymatic activities for thioredoxin reductase, glutathione reductase and glutathione peroxidase activity, respectively). These results indicate that exposure to sub‐lethal doses of Aloe vera juice induces alterations in the cellular redox status of Artemia franciscana and that the addition of vitamin E helps the Artemia franciscana nauplii to overcome/block the juice induced oxidative stress. Copyright


Nano Research | 2018

Selective toxicity of hydroxyl-rich carbon nanodots for cancer research

Tak H. Kim; Joseph Sirdaarta; Qian Zhang; Ehsan Eftekhari; James Anthony St John; Derek Kennedy; Ian Edwin Cock; Qin Li

The toxicity of nanoparticles in a biological system is an integration of effects arising from surface functionality, particle size, ionic dissolution, etc. This complexity suggests that generalization of a material’s toxicity may be inappropriate. Moreover, from a medicinal point of view, toxicity can be used for treatment of malignant cells, such as cancer. In this study, highly biocompatible carbon nanodots (gCDs) were synthesized by reacting citric acid and urea in glycerol, which resulted in abundant hydroxyl functional groups on the particle surface. gCDs show excitation-dependent photoluminescence but with bright green to yellow emission. Importantly, a series of toxicity assessments showed that as-synthesized gCDs possessed exceptional biocompatibilities to various biological entities including 18 bacteria species, Petunia axillaris seedlings, and Artemia franciscana nauplii. Furthermore, the particles were shown to have low to no toxic effects on human embryonic kidney (HEK-293), breast (MCF-7), and oral squamous (CAL-27) carcinoma cell lines. Of particular interest, the gCDs displayed antiproliferative activities against ovarian choriocarcinoma cells (JAr/Jeg-3 cell lines), which may be further explored for cancer drug discovery.


Pharmacognosy Magazine | 2016

High Performance Liquid Chromatography-mass Spectrometry Analysis of High Antioxidant Australian Fruits with Antiproliferative Activity Against Cancer Cells

Joseph Sirdaarta; Anton Maen; Paran Rayan; Ben Matthews; Ian Edwin Cock

Background: High antioxidant capacities have been linked to the treatment and prevention of several cancers. Recent reports have identified several native Australian fruits with high antioxidant capacities. Despite this, several of these species are yet to be tested for anticancer activity. Materials and Methods: Solvent extracts prepared from high antioxidant native Australian fruits were analyzed for antioxidant capacity by the di (phenyl)-(2,4,6-trinitrophenyl) iminoazanium free radical scavenging assay. Antiproliferative activities against CaCo2 and HeLa cancer cells were determined by a multicellular tumor spheroid-based cell proliferation assay. Toxicity was determined by Artemia franciscana bioassay. Results: Methanolic extracts of all plant species displayed high antioxidant contents (equivalent to approximately 7–16 mg of vitamin C per gram of fruit extracted). Most aqueous extracts also contained relatively high antioxidant capacities. In contrast, the ethyl acetate, chloroform, and hexane extracts of most species (except lemon aspen and bush tomato) had lower antioxidant contents (below 1.5 mg of vitamin C equivalents per gram of plant material extracted). The antioxidant contents correlated with the ability of the extracts to inhibit proliferation of CaCo2 and HeLa cancer cell lines. The high antioxidant methanolic extracts of all species were potent inhibitors of cell proliferation. The methanolic lemon aspen extract was particularly effective, with IC50 values of 480 and 769 μg/mL against HeLa and CaCo2 cells, respectively. In contrast, the lower antioxidant ethyl acetate and hexane extracts (except the lemon aspen ethyl acetate extract) generally did not inhibit cancer cell proliferation or inhibited to only a minor degree. Indeed, most of the ethyl acetate and hexane extracts induced potent cell proliferation. The native tamarind ethyl acetate extract displayed low-moderate toxicity in the A. franciscana bioassay (LC50 values below 1000 μg/mL). All other extracts were nontoxic. A total of 145 unique mass signals were detected in the lemon aspen methanolic and aqueous extracts by nonbiased high-performance liquid chromatography-mass spectrometry analysis. Of these, 20 compounds were identified as being of particular interest due to their reported antioxidant and/or anticancer activities. Conclusions: The lack of toxicity and antiproliferative activity of the high antioxidant plant extracts against HeLa and CaCo2 cancer cell lines indicates their potential in the treatment and prevention of some cancers. SUMMARY Australian fruit extracts with high antioxidant contents were potent inhibitors of CaCo2 and HeLa carcinoma cell proliferation Methanolic lemon aspen extract was particularly potent, with IC50 values of 480 μg/mL (HeLa) and 769 μg/mL (CaCo2) High.performance liquid chromatography.mass spectrometry.quadrupole time.of.flight analysis highlighted and putatively identified 20 compounds in the antiproliferative lemon aspen extracts In contrast, lower antioxidant content extracts stimulated carcinoma cell proliferation All extracts with antiproliferative activity were nontoxic in the Artemia nauplii assay. Abbreviations used: DPPH: di (phenyl)- (2,4,6-trinitrophenyl) iminoazanium, HPLC: High-performance liquid chromatography, IC50: The concentration required to inhibit by 50%, LC50: The concentration required to achieve 50% mortality, MS: Mass spectrometry. Ian Edwin Cock


Pharmacognosy Communications | 2014

The potential of tasmannia lanceolata as a natural preservative and medicinal agent: antimicrobial activity and toxicity

V. Winnett; Honorine Boyer; Joseph Sirdaarta; Ian Edwin Cock; Ecole Supérieure; Sainte Clotilde; Ile de La Réunion


Polymer Journal | 2014

Tannin components and inhibitory activity of Kakadu plum leaf extracts against microbial triggers of autoimmune inflammatory diseases

Reece Courtney; Joseph Sirdaarta; Ben Matthews; Ian Edwin Cock


Journal of Functional Foods | 2015

Kakadu plum fruit extracts inhibit growth of the bacterial triggers of rheumatoid arthritis: Identification of stilbene and tannin components

Joseph Sirdaarta; Ben Matthews; Ian Edwin Cock


Pharmacognosy Communications | 2015

GC-MS and LC-MS analysis of Kakadu plum fruit extracts displaying inhibitory activity against microbial triggers of multiple sclerosis

Joseph Sirdaarta; Ben Matthews; Alan White; Ian Edwin Cock


Pharmacognosy Communications | 2014

The Anti-Proliferative Properties of Australian Plants with High Antioxidant Capacities Against Cancer Cell Lines

Jamieson N; Joseph Sirdaarta; Ian Edwin Cock


ACS Applied Materials & Interfaces | 2016

Yellow-Emitting Carbon Nanodots and Their Flexible and Transparent Films for White LEDs

Tak H. Kim; Alan White; Joseph Sirdaarta; Wenyu Ji; Ian Edwin Cock; James Anthony St John; Sue Elizabeth Boyd; Christopher L. Brown; Qin Li

Collaboration


Dive into the Joseph Sirdaarta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qin Li

Griffith University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge