Mitchell Henry Wright
Griffith University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mitchell Henry Wright.
Applied and Environmental Microbiology | 2016
Mitchell Henry Wright; Saad M. Farooqui; Alan White; Anthony Carlson Greene
ABSTRACT Several species of the bacterial genus Shewanella are well-known dissimilatory reducers of manganese under anaerobic conditions. In fact, Shewanella oneidensis is one of the most well studied of all metal-reducing bacteria. In the current study, a number of Shewanella strains were tested for manganese-oxidizing capacity under aerobic conditions. All were able to oxidize Mn(II) and to produce solid dark brown manganese oxides. Shewanella loihica strain PV-4 was the strongest oxidizer, producing oxides at a rate of 20.3 mg/liter/day and oxidizing Mn(II) concentrations of up to 9 mM. In contrast, S. oneidensis MR-1 was the weakest oxidizer tested, producing oxides at 4.4 mg/liter/day and oxidizing up to 4 mM Mn(II). Analysis of products from the strongest oxidizers, i.e., S. loihica PV-4 and Shewanella putrefaciens CN-32, revealed finely grained, nanosize, poorly crystalline oxide particles with identical Mn oxidation states of 3.86. The biogenic manganese oxide products could be subsequently reduced within 2 days by all of the Shewanella strains when culture conditions were made anoxic and an appropriate nutrient (lactate) was added. While Shewanella species were detected previously as part of manganese-oxidizing consortia in natural environments, the current study has clearly shown manganese-reducing Shewanella species bacteria that are able to oxidize manganese in aerobic cultures. IMPORTANCE Members of the genus Shewanella are well known as dissimilatory manganese-reducing bacteria. This study shows that a number of species from Shewanella are also capable of manganese oxidation under aerobic conditions. Characterization of the products of the two most efficient oxidizers, S. loihica and S. putrefaciens, revealed finely grained, nanosize oxide particles. With a change in culture conditions, the manganese oxide products could be subsequently reduced by the same bacteria. The ability of Shewanella species both to oxidize and to reduce manganese indicates that the genus plays a significant role in the geochemical cycling of manganese. Due to the high affinity of manganese oxides for binding other metals, these bacteria may also contribute to the immobilization and release of other metals in the environment.
Frontiers in Microbiology | 2018
Mitchell Henry Wright; Kati Geszvain; Véronique E. Oldham; George W. Luther; Bradley M. Tebo
The observation of significant concentrations of soluble Mn(III) complexes in oxic, suboxic, and some anoxic waters has triggered a re-evaluation of the previous Mn paradigm which focused on the cycling between soluble Mn(II) and insoluble Mn(III,IV) species as operationally defined by filtration. Though Mn(II) oxidation in aquatic environments is primarily bacterially-mediated, little is known about the effect of Mn(III)-binding ligands on Mn(II) oxidation nor on the formation and removal of Mn(III). Pseudomonas putida GB-1 is one of the most extensively investigated of all Mn(II) oxidizing bacteria, encoding genes for three Mn oxidases (McoA, MnxG, and MopA). P. putida GB-1 and associated Mn oxidase mutants were tested alongside environmental isolates Pseudomonas hunanensis GSL-007 and Pseudomonas sp. GSL-010 for their ability to both directly oxidize weakly and strongly bound Mn(III), and to form these complexes through the oxidation of Mn(II). Using Mn(III)-citrate (weak complex) and Mn(III)-DFOB (strong complex), it was observed that P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 and mutants expressing only MnxG and McoA were able to directly oxidize both species at varying levels; however, no oxidation was detected in cultures of a P. putida mutant expressing only MopA. During cultivation in the presence of Mn(II) and citrate or DFOB, P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 formed Mn(III) complexes transiently as an intermediate before forming Mn(III/IV) oxides with the overall rates and extents of Mn(III,IV) oxide formation being greater for Mn(III)-citrate than for Mn(III)-DFOB. These data highlight the role of bacteria in the oxidative portion of the Mn cycle and suggest that the oxidation of strong Mn(III) complexes can occur through enzymatic mechanisms involving multicopper oxidases. The results support the observations from field studies and further emphasize the complexity of the geochemical cycling of manganese.
International Journal of Cosmetic Science | 2017
Kane McManus; Aiden Wood; Mitchell Henry Wright; Ben Matthews; Anthony Carlson Greene; Ian Edwin Cock
Terminalia ferdinandiana extracts are potent growth inhibitors of many bacterial pathogens. They may also inhibit the growth of malodour‐producing bacteria and thus be useful deodorant components, although this is yet to be tested.
Food Microbiology | 2019
Mitchell Henry Wright; Joseph Shalom; Ben Matthews; Anthony Carlson Greene; Ian Edwin Cock
Shewanella spp. are major causes of fish spoilage. Terminalia ferdinandiana (Kakadu plum) extracts were investigated for their ability to inhibit Shewanella spp. growth. Leaf and fruit extracts displayed potent growth inhibitory properties against all Shewanella spp. The methanolic leaf extract was a particularly potent inhibitor of S. putrefaciens (DD MIC 93; LD MIC 73 μg/mL), S. baltica (DD MIC 104 μg/mL; LD MIC 85 μg/mL), S. frigidimarina (DD MIC 466 μg/mL; LD MIC 391 μg/mL) and S. loihica (DD MIC 95 μg/mL; LD MIC 55 μg/mL) growth. The aqueous and ethyl acetate leaf extracts were also potent growth inhibitors, with MIC values generally substantially <1000 μg/mL. Treatment of Acanthopagrus butcheri Munro fillets with methanolic Kakadu plum extracts significantly inhibited bacterial growth for 15 days at 4 °C. All Kakadu plum extracts were nontoxic in the Artemia franciscana bioassay. LC-MS analysis identified several compounds which may contribute to the inhibition of Shewanella spp. growth.
Pharmacognosy Communications | 2017
Aiden Wood; Kane McManus; Mitchell Henry Wright; Anthony Carlson Greene; Ian Edwin Cock
Background: Extracts produced from S. australe and S. luehmannii fruit and leaves are potent growth inhibitors of many bacterial pathogens. They may also inhibit the growth of malodour producing bacteria and thus be useful deodorant components, although this is yet to be tested. Methods: S. australe and S. luehmannii fruit and leaf solvent extracts were investigated by disc diffusion assays against significant bacterial contributors to axillary and plantar malodour formation. Toxicity was determined using the Artemia franciscana nauplii bioassay. Results: S. australe and S. luehmannii solvent extracts were good inhibitors of B. linens and C. jeikeium growth, with zones of inhibition up to 10 mm measured. S. australe extracts were generally better inhibitors of both bacterial species compared with the S. luehmannii extracts. Ethyl acetate extracts were particularly potent, with MIC values of 300 and 857 μg/mL for the S. australe fruit and leaf extracts respectively against B. linens, and 1000 and 311 μg/mL against C. jeikeium. The S. luehmannii fruit ethyl acetate extracts were similarly potent growth inhibitors, with MIC values of 571 and 203 μg/mL against B. linens and C. jeikeium respectively. S. australe aqueous and methanolic leaf extracts were also potent inhibitors of C. jeikeium (MIC’s of 285 and 306 μg/mL respectively). All other extracts had moderate or low inhibitory activity. All of the most potent ethyl acetate extracts were nontoxic in the Artemia franciscana bioassay. In contrast, the methanolic and aqueous S. australe leaf extracts, as well as the aqueous and methanolic S. luehmannii fruit extracts displayed apparent toxicity. However, these results may be fallacious and instead result from the high antioxidant content of these extracts. Conclusion: The potent growth inhibition of axillary and plantar malodour producing bacteria by the Syzygium spp. extracts indicate their potential as deodorant components.
Journal of Microbiology & Biology Education | 2017
Mitchell Henry Wright; Joseph Adelskov; Anthony Carlson Greene
Marmur (4) developed one of the first detailed comprehensive methods for purifying bacterial DNA. This procedure is now outdated, and can be difficult to follow for those with limited experience in molecular biology. Here, we provide a modernized, simplified protocol for extracting bacterial DNA and discuss how this can be incorporated into microbiology laboratory courses for biology majors.
Pharmacognosy Communications | 2015
Mitchell Henry Wright; Ben Matthews; Anthony Carlson Greene; Ian Edwin Cock
International Journal of Food Science and Technology | 2016
Mitchell Henry Wright; Ben Matthews; Megan Sarah Jean Arnold; Anthony Carlson Greene; Ian Edwin Cock
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2016
Saad M. Farooqui; Mitchell Henry Wright; Anthony Carlson Greene
Pharmacognosy Communications | 2016
Mitchell Henry Wright; Cameron Jay Lee; Charmaine Estelle Pollock; Anthony Carlson Greene; Ian Edwin Cock