Joseph T.C. Shieh
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joseph T.C. Shieh.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Christopher J. Cohen; Joseph T.C. Shieh; Raymond J. Pickles; Takatsugu Okegawa; Jer Tsong Hsieh; Jeffrey M. Bergelson
The coxsackievirus and adenovirus receptor (CAR) mediates viral attachment and infection, but its physiologic functions have not been described. In nonpolarized cells, CAR localized to homotypic intercellular contacts, mediated homotypic cell aggregation, and recruited the tight junction protein ZO-1 to sites of cell–cell contact. In polarized epithelial cells, CAR and ZO-1 colocalized to tight junctions and could be coprecipitated from cell lysates. CAR expression led to reduced passage of macromolecules and ions across cell monolayers, and soluble CAR inhibited the formation of functional tight junctions. Virus entry into polarized epithelium required disruption of tight junctions. These results indicate that CAR is a component of the tight junction and of the functional barrier to paracellular solute movement. Sequestration of CAR in tight junctions may limit virus infection across epithelial surfaces.
Human Mutation | 2008
David Dimmock; Qing Zhang; Carlo Dionisi-Vici; Rosalba Carrozzo; Joseph T.C. Shieh; L. Y. Tang; Cavatina K. Truong; Eric S. Schmitt; M. Sifry-Platt; S. Lucioli; Filippo M. Santorelli; Can Ficicioglu; M. Rodriguez; K. Wierenga; Gregory M. Enns; Nicola Longo; M. H. Lipson; H.D. Vallance; William J. Craigen; Fernando Scaglia; L. J. Wong
Published mutations in deoxyguanosine kinase (DGUOK) cause mitochondrial DNA depletion and a clinical phenotype that consists of neonatal liver failure, nystagmus and hypotonia. In this series, we have identified 15 different mutations in the DGUOK gene from 9 kindreds. Among them, 12 have not previously been reported. Nonsense, splice site, or frame‐shift mutations that produce truncated proteins predominate over missense mutations. All patients who harbor null mutations had early onset liver failure and significant neurological disease. These patients have all died before 2‐years of age. Conversely, two patients carrying missense mutations had isolated liver disease and are alive in their 4th year of life without liver transplant. Five subjects were detected by newborn screening, with elevated tyrosine or phenylalanine. Consequently, this disease should be considered if elevated tyrosine is identified by newborn screening. Mitochondrial DNA content was below 10% of controls in liver in all but one case and modestly reduced in blood cells. With this paper a total of 39 different mutations in DGUOK have been identified. The most frequent mutation, c.763_c.766dupGATT, occurs in 8 unrelated kindreds. 70% of mutations occur in only one kindred, suggesting full sequencing of this gene is required for diagnosis. The presentation of one case with apparent viral hepatitis, without neurological disease, suggests that this disease should be considered in patients with infantile liver failure regardless of the presence of neurological features or apparent infectious etiology.
PLOS ONE | 2011
Joseph T.C. Shieh; Yu Huang; Jacqueline Gilmore; Deepak Srivastava
Background The heart responds to myriad stresses by well-described transcriptional responses that involve long-term changes in gene expression as well as more immediate, transient adaptations. MicroRNAs quantitatively regulate mRNAs and thus may affect the cardiac transcriptional output and cardiac function. Here we investigate miR-499, a microRNA embedded within a ventricular-specific myosin heavy chain gene, which is expressed in heart and skeletal muscle. Methodology/Principal Findings We assessed miR-499 expression in human tissue to confirm its potential relevance to human cardiac gene regulation. Using a transgenic mouse model, we found that elevated miR-499 levels caused cellular hypertrophy and cardiac dysfunction in a dose-dependent manner. Global gene expression profiling revealed altered levels of the immediate early stress response genes (Egr1, Egr2 and Fos), ß-myosin heavy chain (Myh7), and skeletal muscle actin (Acta1). We verified the effect of miR-499 on the immediate early response genes by miR-499 gain- and loss-of-function in vitro. Consistent with a role for miR-499 in blunting the response to cardiac stress, asymptomatic miR-499-expressing mice had an impaired response to pressure overload and accentuated cardiac dysfunction. Conclusions Elevated miR-499 levels affect cardiac gene expression and predispose to cardiac stress-induced dysfunction. miR-499 may titrate the cardiac response to stress in part by regulating the immediate early gene response.
American Journal of Medical Genetics Part A | 2007
Robert Conway; Barry D. Pressman; William B. Dobyns; Moise Danielpour; John J. Lee; Pedro A. Sanchez-Lara; Merlin G. Butler; Elaine H. Zackai; Lindsey Campbell; Sulagna C. Saitta; Carol L. Clericuzio; Jeff M. Milunsky; H. Eugene Hoyme; Joseph T.C. Shieh; John B. Moeschler; Barbara F. Crandall; Julie Lauzon; David H. Viskochil; Brian Harding; John M. Graham
Here, we report the neuroimaging findings and neurological changes in 17 unpublished patients with Macrocephaly–Capillary Malformation (M–CM). This syndrome has been traditionally known as Macrocephaly–Cutis Marmorata Telangiectatica Congenita (M–CMTC), but we explain why M–CM is a more accurate term for this overgrowth syndrome. We analyzed the 17 patients with available brain MRI or CT scans and compared their findings with features identified by a comprehensive review of published cases. White matter irregularities with increased signal on T2‐weighted images were commonly observed findings. A distinctive feature in more than half the patients was cerebellar tonsillar herniation associated with rapid brain growth and progressive crowding of the posterior fossa during infancy. In four such cases, we confirmed that the tonsillar herniation was an acquired event. Concurrently, with the development of these findings, ventriculomegaly (frequently obstructive) and dilated dural venous sinuses were observed in conjunction with prominent Virchow–Robin spaces in many of those in whom cerebellar tonsil herniation had developed. We postulate that this constellation of unusual features suggests a dynamic process of mechanical compromise in the posterior fossa, perhaps initiated by a rapidly growing cerebellum, which leads to congestion of the venous drainage with subsequently compromised cerebrospinal fluid reabsorption, all of which increases the posterior fossa pressure and leads to acquired tonsillar herniation. We make a distinction between congenital Chiari I malformation and acquired cerebellar tonsil herniation in this syndrome. We also observed numerous examples of abnormal cortical morphogenesis, including focal cortical dysplasia, polymicrogyria which primarily involved the perisylvian and insular regions, and cerebral and/or cerebellar asymmetric overgrowth. Other findings included a high frequency of cavum septum pellucidum or vergae, thickened corpus callosum, prominent optic nerve sheaths and a single case of venous sinus thrombosis. One patient was found to have a frontal perifalcine mass resembling a meningioma at age 5 years. This is the second apparent occurrence of this specific tumor in M–CM.
American Journal of Medical Genetics Part A | 2006
Margaret P Adam; Susan Schelley; Renata C. Gallagher; April N. Brady; Kimberly Barr; Bruce Blumberg; Joseph T.C. Shieh; John M. Graham; Anne Slavotinek; Madelena Martin; Kim M. Keppler-Noreuil; Andrea L. Storm; Louanne Hudgins
Mowat–Wilson syndrome (MWS) is a relatively newly described multiple congenital anomaly/mental retardation syndrome. Haploinsufficiency of a gene termed ZFHX1B (also known as SIP1) on chromosome 2 is responsible for this condition, and clinical genetic testing for MWS recently became available. The majority of reports in the literature originate from Northern Europe and Australia. Here we report our clinical experience with 12 patients diagnosed with MWS within a 2‐year period of time in the United States, with particular emphasis on clinical characteristics and management strategies. Individuals with this condition have characteristic facial features, including microcephaly, hypertelorism, medially flared and broad eyebrows, prominent columella, pointed chin, and uplifted earlobes, which typically prompt the clinician to consider the diagnosis. Medical issues in our cohort of patients included seizures (75%) with no predeliction for any particular seizure type; agenesis of the corpus callosum (60% of our patients studied); congenital heart defects (75%), particularly involving the pulmonary arteries and/or valves; hypospadias (55% of males); severely impaired or absent speech (100% of individuals over 1 year of age) with relatively spared receptive language; and Hirschsprung disease (50%) or chronic constipation (25%). The incidence of MWS is unknown, but based on the number of patients identified in a short period of time within the US, it is likely greatly under recognized. MWS should be considered in any individual with severely impaired or absent speech, especially in the presence of seizures and anomalies involving the pulmonary arteries (particularly pulmonary artery sling) or pulmonary valves.
Journal of Virology | 2002
Joseph T.C. Shieh; Jeffrey M. Bergelson
ABSTRACT All coxsackie B (CB) viruses can initiate infection by attaching to the coxsackievirus and adenovirus receptor (CAR). Although some CB isolates also bind to decay-accelerating factor (DAF), the role of DAF interaction during infection remains uncertain. We recently observed that CAR in polarized epithelial cells is concentrated at tight junctions, where it is relatively inaccessible to virus. In the experiments reported here we found that, unlike CAR, DAF was present on the apical surface of polarized cells and that DAF-binding isolates of CB3 and CB5 infected polarized epithelial cells more efficiently than did isolates incapable of attaching to DAF. Virus attachment and subsequent infection of polarized cells by DAF-binding isolates were prevented in the presence of anti-DAF antibody. Serial passage on polarized cell monolayers selected for DAF-binding virus variants. Taken together, these results indicate that interaction with DAF on the apical surface of polarized epithelial cells facilitates infection by a subset of CB virus isolates. The results suggest a possible role for DAF in infection of epithelial cells at mucosal surfaces.
American Journal of Medical Genetics Part A | 2012
Joseph T.C. Shieh; A.H. Bittles; Louanne Hudgins
Consanguineous unions have been associated with an increased susceptibility to various forms of inherited disease. Although consanguinity is known to contribute to recessive diseases, the potential role of consanguinity in certain common birth defects is less clear, particularly since the disease pathophysiology may involve genetic and environmental/epigenetic factors. In this study, we ask whether consanguinity affects one of the most common birth defects, congenital heart disease, and identify areas for further research into these birth defects, since consanguinity may now impact health on a near‐global basis. A systematic review of consanguinity in congenital heart disease was performed, focusing on non‐syndromic disease, with the methodologies and results from studies of different ethnic populations compared. The risks for congenital heart disease have been assessed and summarized collectively and by individual lesion. The majority of studies support the view that consanguinity increases the prevalence of congenital heart disease, however, the study designs differed dramatically. Only a few (n = 3) population‐based studies that controlled for potential sociodemographic confounding were identified, and data on individual cardiac lesions were limited by case numbers. Overall the results suggest that the risk for congenital heart disease is increased in consanguineous unions in the studied populations, principally at first‐cousin level and closer, a factor that should be considered in empiric risk estimates in genetic counseling. However, for more precise risk estimates a better understanding of the underlying disease factors is needed.
Developmental Cell | 2011
Isabelle N. King; Li Qian; Jianping Liang; Yu Huang; Joseph T.C. Shieh; Chulan Kwon; Deepak Srivastava
Many molecular pathways involved in heart disease have their roots in evolutionarily ancient developmental programs that depend critically on gene dosage and timing. MicroRNAs (miRNAs) modulate gene dosage posttranscriptionally, and among these, the muscle-specific miR-1 is particularly important for developing and maintaining somatic/skeletal and cardiac muscle. To identify pathways regulated by miR-1, we performed a forward genetic screen in Drosophila using wing-vein patterning as a biological assay. We identified several unexpected genes that genetically interacted with dmiR-1, one of which was kayak, encodes a developmentally regulated transcription factor. Additional studies directed at this genetic relationship revealed a previously unappreciated function of dmiR-1 in regulating the polarity of cardiac progenitor cells. The mammalian ortholog of kayak, c-Fos, was dysregulated in hearts of gain- or loss-of-function miR-1 mutant mice in a stress-dependent manner. These findings illustrate the power of Drosophila-based screens to find points of intersection between miRNAs and conserved pathways in mammals.
American Journal of Medical Genetics Part A | 2006
Joseph T.C. Shieh; Swaroop Aradhya; Antonio Novelli; Melanie A. Manning; Athena M. Cherry; Janet M. Brumblay; Carmelo Salpietro; Laura Bernardini; Bruno Dallapiccola; H. Eugene Hoyme
In 2000, Teebi reported on a 4‐year‐old boy with a distinctive pattern of malformation, which he termed the “Nablus mask‐like facial syndrome” (OMIM# 608156). Characterization of this syndrome has been difficult because of the paucity of patients described in the medical literature and its unknown etiology and pathogenesis. We present two patients with Nablus mask‐like facial syndrome who both display a microdeletion in the 8q21‐8q22 region detected by array‐based comparative genomic hybridization. Patient 1, a boy, has a distinct facial appearance characterized by severe blepharophimosis, tight‐appearing glistening facial skin, sparse and unruly hair, a flat and broad nose, and distinctive ears that are triangular in shape with prominent antihelices. He also demonstrates camptodactyly, contractures, unusual dentition, cryptorchidism, mild developmental delay, and a happy demeanor. Patient 2, a girl with a strikingly similar phenotype, was previously described in a report by Salpietro et al. 2003 . She has distinctive ears, dental anomalies, and developmental delay. The etiology of her pattern of malformation was not identified at that time. Although high‐resolution chromosome and subtelomeric FISH analyses were normal, array‐based comparative genomic hybridization revealed an approximately 4 Mb deletion involving the 8q21.3‐8q22.1 region in both patients. This region encompasses a number of genes that may contribute to this unique phenotype. These results demonstrate a chromosomal microdeletion as the etiology of Nablus mask‐like facial syndrome and emphasize the diagnostic utility of array‐based comparative genomic hybridization in the evaluation of multiple malformation syndromes of previously unrecognized causation.
Pediatrics | 2017
Jonathan S. Berg; Pankaj B. Agrawal; Donald B. Bailey; Alan H. Beggs; Steven E. Brenner; Amy Brower; Julie A. Cakici; Ozge Ceyhan-Birsoy; Kee Chan; Flavia Chen; Robert Currier; Dmitry Dukhovny; Robert C. Green; Julie Harris-Wai; Ingrid A. Holm; Brenda Iglesias; Galen Joseph; Stephen F. Kingsmore; Barbara A. Koenig; Pui-Yan Kwok; John D. Lantos; Steven Leeder; Megan A. Lewis; Amy L. McGuire; Laura V. Milko; Sean D. Mooney; Richard B. Parad; Stacey Pereira; Joshua E. Petrikin; Bradford C. Powell
The rapid development of genomic sequencing technologies has decreased the cost of genetic analysis to the extent that it seems plausible that genome-scale sequencing could have widespread availability in pediatric care. Genomic sequencing provides a powerful diagnostic modality for patients who manifest symptoms of monogenic disease and an opportunity to detect health conditions before their development. However, many technical, clinical, ethical, and societal challenges should be addressed before such technology is widely deployed in pediatric practice. This article provides an overview of the Newborn Sequencing in Genomic Medicine and Public Health Consortium, which is investigating the application of genome-scale sequencing in newborns for both diagnosis and screening.