Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph W. Kable is active.

Publication


Featured researches published by Joseph W. Kable.


Nature Neuroscience | 2007

The neural correlates of subjective value during intertemporal choice

Joseph W. Kable; Paul W. Glimcher

Neuroimaging studies of decision-making have generally related neural activity to objective measures (such as reward magnitude, probability or delay), despite choice preferences being subjective. However, economic theories posit that decision-makers behave as though different options have different subjective values. Here we use functional magnetic resonance imaging to show that neural activity in several brain regions—particularly the ventral striatum, medial prefrontal cortex and posterior cingulate cortex—tracks the revealed subjective value of delayed monetary rewards. This similarity provides unambiguous evidence that the subjective value of potential rewards is explicitly represented in the human brain.


Neuron | 2009

The Neurobiology of Decision: Consensus and Controversy

Joseph W. Kable; Paul W. Glimcher

We review and synthesize recent neurophysiological studies of decision making in humans and nonhuman primates. From these studies, the basic outline of the neurobiological mechanism for primate choice is beginning to emerge. The identified mechanism is now known to include a multicomponent valuation stage, implemented in ventromedial prefrontal cortex and associated parts of striatum, and a choice stage, implemented in lateral prefrontal and parietal areas. Neurobiological studies of decision making are beginning to enhance our understanding of economic and social behavior as well as our understanding of significant health disorders where peoples behavior plays a key role.


Behavioral and Brain Sciences | 2013

An opportunity cost model of subjective effort and task performance.

Robert Kurzban; Angela L. Duckworth; Joseph W. Kable; Justus Myers

Why does performing certain tasks cause the aversive experience of mental effort and concomitant deterioration in task performance? One explanation posits a physical resource that is depleted over time. We propose an alternative explanation that centers on mental representations of the costs and benefits associated with task performance. Specifically, certain computational mechanisms, especially those associated with executive function, can be deployed for only a limited number of simultaneous tasks at any given moment. Consequently, the deployment of these computational mechanisms carries an opportunity cost--that is, the next-best use to which these systems might be put. We argue that the phenomenology of effort can be understood as the felt output of these cost/benefit computations. In turn, the subjective experience of effort motivates reduced deployment of these computational mechanisms in the service of the present task. These opportunity cost representations, then, together with other cost/benefit calculations, determine effort expended and, everything else equal, result in performance reductions. In making our case for this position, we review alternative explanations for both the phenomenology of effort associated with these tasks and for performance reductions over time. Likewise, we review the broad range of relevant empirical results from across sub-disciplines, especially psychology and neuroscience. We hope that our proposal will help to build links among the diverse fields that have been addressing similar questions from different perspectives, and we emphasize ways in which alternative models might be empirically distinguished.


Journal of Cognitive Neuroscience | 2002

Neural Substrates of Action Event Knowledge

Joseph W. Kable; Jessica Lease-Spellmeyer; Anjan Chatterjee

Human concepts can be roughly divided into entities (prototypically referred to in language by nouns) and events (prototypically referred to in language by verbs). While much work in cognitive neuroscience has investigated how the brain represents different categories of entities, less attention has been given to the more basic distinction between entities and events. We used functional magnetic resonance imaging to examine brain activity while subjects performed a conceptual matching task that required them to access knowledge of objects and actions, using either pictures or words. Since action events involve movement through space, we hypothesized that accessing knowledge of actions would cause greater activation in brain regions involved in motion or spatial processing. In comparison to objects, accessing knowledge of actions through pictures was accompanied by increased activity bilaterally in the human MT/MST and nearby regions of the lateral temporal cortex. Accessing knowledge of actions through words activated areas just anterior and dorsal to area MT/MST on the left, within the posterior aspect of the middle and superior temporal gyri. We propose that the lateral occipital temporal cortex contains a mosaic of neural regions that processes different kinds of motion, ranging from the perception of objects moving in the world to the conception of movement implied in action verbs. The lateral occipital temporal cortex mediates the perceptual and conceptual features of action events, similar to the way that the ventral occipital temporal cortex processes the perceptual and conceptual features of entities.


Journal of Cognitive Neuroscience | 2005

Conceptual Representations of Action in the Lateral Temporal Cortex

Joseph W. Kable; Irene P. Kan; Ashley Wilson; Sharon L. Thompson-Schill; Anjan Chatterjee

Retrieval of conceptual information from action pictures causes greater activation than from object pictures bilaterally in human motion areas (MT/MST) and nearby temporal regions. By contrast, retrieval of conceptual information from action words causes greater activation in left middle and superior temporal gyri, anterior and dorsal to the MT/MST. We performed two fMRI experiments to replicate and extend these findings regarding action words. In the first experiment, subjects performed conceptual judgments of action and object words under conditions that stressed visual semantic information. Under these conditions, action words again activated posterior temporal regions close to, but not identical with, the MT/MST. In the second experiment, we included conceptual judgments of manipulable object words in addition to judgments of action and animal words. Both action and manipulable object judgments caused greater activity than animal judgments in the posterior middle temporal gyrus. Both of these experiments support the hypothesis that middle temporal gyrus activation is related to accessing conceptual information about motion attributes, rather than alternative accounts on the basis of lexical or grammatical factors. Furthermore, these experiments provide additional support for the notion of a concrete to abstract gradient of motion representations with the lateral occipito-temporal cortex, extending anterior and dorsal from the MT/MST towards the peri-sylvian cortex.


The Journal of Neuroscience | 2011

Ventromedial frontal lobe damage disrupts value maximization in humans

Nathalie Camille; Cathryn A. Griffiths; Khoi Vo; Lesley K. Fellows; Joseph W. Kable

Recent work in neuroeconomics has shown that regions in orbitofrontal and medial prefrontal cortex encode the subjective value of different options during choice. However, these electrophysiological and neuroimaging studies cannot demonstrate whether such signals are necessary for value-maximizing choices. Here we used a paradigm developed in experimental economics to empirically measure and quantify violations of utility theory in humans with damage to the ventromedial frontal lobe (VMF). We show that people with such damage are more likely to make choices that violate the generalized axiom of revealed preference, which is the one necessary and sufficient condition for choices to be consistent with value maximization. These results demonstrate that the VMF plays a critical role in value-maximizing choice.


Journal of Cognitive Neuroscience | 2006

Specificity of Action Representations in the Lateral Occipitotemporal Cortex

Joseph W. Kable; Anjan Chatterjee

The ability to recognize actions is important for cognitive development and social cognition. Areas in the lateral occipitotemporal cortex show increased activity when subjects view action sequences; however, whether this activity distinguishes between specific actions as necessary for action recognition is unclear. We used a functional magnetic resonance imaging adaptation paradigm to test for brain regions that exhibit action-specific activity. Subjects watched a series of action sequences in which the action performed or the person performing the action could be repeated from a previous scan. Three regionsthe superior temporal sulcus (pSTS), human motion-sensitive cortex (MT/MST), and extrastriate body area (EBA)showed decreased activity for previously seen actions, even when the actions were novel exemplars because the persons involved had not been seen previously. These action-specific adaptation effects provide compelling evidence that representations in the pSTS, MT/MST, and EBA abstract actions from the agents involved and distinguish between different particular actions.


Neuron | 2014

Functionally Dissociable Influences on Learning Rate in a Dynamic Environment

Joseph McGuire; Matthew R. Nassar; Joshua I. Gold; Joseph W. Kable

Maintaining accurate beliefs in a changing environment requires dynamically adapting the rate at which one learns from new experiences. Beliefs should be stable in the face of noisy data but malleable in periods of change or uncertainty. Here we used computational modeling, psychophysics, and fMRI to show that adaptive learning is not a unitary phenomenon in the brain. Rather, it can be decomposed into three computationally and neuroanatomically distinct factors that were evident in human subjects performing a spatial-prediction task: (1) surprise-driven belief updating, related to BOLD activity in visual cortex; (2) uncertainty-driven belief updating, related to anterior prefrontal and parietal activity; and (3) reward-driven belief updating, a context-inappropriate behavioral tendency related to activity in ventral striatum. These distinct factors converged in a core system governing adaptive learning. This system, which included dorsomedial frontal cortex, responded to all three factors and predicted belief updating both across trials and across individuals.


Neuropsychopharmacology | 2015

Common and Dissociable Dysfunction of the Reward System in Bipolar and Unipolar Depression

Theodore D. Satterthwaite; Joseph W. Kable; Lillie Vandekar; Natalie Katchmar; Danielle S. Bassett; Claudia F. Baldassano; Kosha Ruparel; Mark A. Elliott; Yvette I. Sheline; Ruben C. Gur; Raquel E. Gur; Christos Davatzikos; Ellen Leibenluft; Michael E. Thase; Daniel H. Wolf

Unipolar and bipolar depressive episodes have a similar clinical presentation that suggests common dysfunction of the brain’s reward system. Here, we evaluated the relationship of both dimensional depression severity and diagnostic category to reward system function in both bipolar and unipolar depression. In total, 89 adults were included, including 27 with bipolar depression, 25 with unipolar depression, and 37 healthy comparison subjects. Subjects completed both a monetary reward task and a resting-state acquisition during 3T BOLD fMRI. Across disorders, depression severity was significantly associated with reduced activation for wins compared with losses in bilateral ventral striatum, anterior cingulate cortex, posterior cingulate cortex, and right anterior insula. Resting-state connectivity within this reward network was also diminished in proportion to depression severity, most notably connectivity strength in the left ventral striatum. In addition, there were categorical differences between patient groups: resting-state connectivity at multiple reward network nodes was higher in bipolar than in unipolar depression. Reduced reward system task activation and resting-state connectivity therefore appear to be a brain phenotype that is dimensionally related to depression severity in both bipolar and unipolar depression. In contrast, categorical differences in reward system resting connectivity between unipolar and bipolar depression may reflect differential risk of mania. Reward system dysfunction thus represents a common brain mechanism with relevance that spans categories of psychiatric diagnosis.


Cognition | 2012

Decision makers calibrate behavioral persistence on the basis of time-interval experience

Joseph McGuire; Joseph W. Kable

A central question in intertemporal decision making is why people reverse their own past choices. Someone who initially prefers a long-run outcome might fail to maintain that preference for long enough to see the outcome realized. Such behavior is usually understood as reflecting preference instability or self-control failure. However, if a decision maker is unsure exactly how long an awaited outcome will be delayed, a reversal can constitute the rational, utility-maximizing course of action. In the present behavioral experiments, we placed participants in timing environments where persistence toward delayed rewards was either productive or counterproductive. Our results show that human decision makers are responsive to statistical timing cues, modulating their level of persistence according to the distribution of delay durations they encounter. We conclude that temporal expectations act as a powerful and adaptive influence on peoples tendency to sustain patient decisions.

Collaboration


Dive into the Joseph W. Kable's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anjan Chatterjee

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Daniel H. Wolf

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalie Katchmar

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca L. Ashare

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Caryn Lerman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kosha Ruparel

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Anup Sharma

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge