Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua B. Parsons is active.

Publication


Featured researches published by Joshua B. Parsons.


Progress in Lipid Research | 2013

Bacterial lipids: Metabolism and membrane homeostasis

Joshua B. Parsons; Charles O. Rock

Membrane lipid homeostasis is a vital facet of bacterial cell physiology. For decades, research in bacterial lipid synthesis was largely confined to the Escherichia coli model system. This basic research provided a blueprint for the biochemistry of lipid metabolism that has largely defined the individual steps in bacterial fatty acid and phospholipids synthesis. The advent of genomic sequencing has revealed a surprising amount of diversity in the genes, enzymes and genetic organization of the components responsible for bacterial lipid synthesis. Although the chemical steps in fatty acid synthesis are largely conserved in bacteria, there are surprising differences in the structure and cofactor requirements for the enzymes that perform these reactions in Gram-positive and Gram-negative bacteria. This review summarizes how the explosion of new information on the diversity of biochemical and genetic regulatory mechanisms has impacted our understanding of bacterial lipid homeostasis. The potential and problems of developing therapeutics that block pathogen phospholipid synthesis are explored and evaluated. The study of bacterial lipid metabolism continues to be a rich source for new biochemistry that underlies the variety and adaptability of bacterial life styles.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Metabolic basis for the differential susceptibility of Gram-positive pathogens to fatty acid synthesis inhibitors

Joshua B. Parsons; Matthew W. Frank; Chitra Subramanian; Panatda Saenkham; Charles O. Rock

The rationale for the pursuit of bacterial type 2 fatty acid synthesis (FASII) as a target for antibacterial drug discovery in Gram-positive organisms is being debated vigorously based on their ability to incorporate extracellular fatty acids. The regulation of FASII by extracellular fatty acids was examined in Staphylococcus aureus and Streptococcus pneumoniae, representing two important groups of pathogens. Both bacteria use the same enzymatic tool kit for the conversion of extracellular fatty acids to acyl-acyl carrier protein, elongation, and incorporation into phospholipids. Exogenous fatty acids completely replace the endogenous fatty acids in S. pneumoniae but support only 50% of phospholipid synthesis in S. aureus. Fatty acids overcame FASII inhibition in S. pneumoniae but not in S. aureus. Extracellular fatty acids strongly suppress malonyl-CoA levels in S. pneumoniae but not in S. aureus, showing a feedback regulatory system in S. pneumoniae that is absent in S. aureus. Fatty acids overcame either a biochemical or a genetic block at acetyl-CoA carboxylase (ACC) in S. aureus, confirming that regulation at the ACC step is the key difference between these two species. Bacteria that possess a stringent biochemical feedback inhibition of ACC and malonyl-CoA formation triggered by environmental fatty acids are able to circumvent FASII inhibition. However, if exogenous fatty acids do not suppress malonyl-CoA formation, FASII inhibitors remain effective in the presence of fatty acid supplements.


Current Opinion in Microbiology | 2011

Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery

Joshua B. Parsons; Charles O. Rock

The emergence of resistance against most current drugs emphasizes the need to develop new approaches to control bacterial pathogens, particularly Staphylococcus aureus. Bacterial fatty acid synthesis is one such target that is being actively pursued by several research groups to develop anti-Staphylococcal agents. Recently, the wisdom of this approach has been challenged based on the ability of a Gram-positive bacterium to incorporate extracellular fatty acids and thus circumvent the inhibition of de novo fatty acid synthesis. The generality of this conclusion has been challenged, and there is enough diversity in the enzymes and regulation of fatty acid synthesis in bacteria to conclude that there is not a single organism that can be considered typical and representative of bacteria as a whole. We are left without a clear resolution to this ongoing debate and await new basic research to define the pathways for fatty acid uptake and that determine the biochemical and genetic mechanisms for the regulation of fatty acid synthesis in Gram-positive bacteria. These crucial experiments will determine whether diversity in the control of this important pathway accounts for the apparently different responses of Gram-positive bacteria to the inhibition of de novo fatty acid synthesis in presence of extracellular fatty acid supplements.


Journal of Bacteriology | 2012

Membrane Disruption by Antimicrobial Fatty Acids Releases Low-Molecular-Weight Proteins from Staphylococcus aureus

Joshua B. Parsons; Jiangwei Yao; Matthew W. Frank; Pamela Jackson; Charles O. Rock

The skin represents an important barrier for pathogens and is known to produce fatty acids that are toxic toward gram-positive bacteria. A screen of fatty acids as growth inhibitors of Staphylococcus aureus revealed structure-specific antibacterial activity. Fatty acids like oleate (18:1Δ9) were nontoxic, whereas palmitoleate (16:1Δ9) was a potent growth inhibitor. Cells treated with 16:1Δ9 exhibited rapid membrane depolarization, the disruption of all major branches of macromolecular synthesis, and the release of solutes and low-molecular-weight proteins into the medium. Other cytotoxic lipids, such as glycerol ethers, sphingosine, and acyl-amines blocked growth by the same mechanisms. Nontoxic 18:1Δ9 was used for phospholipid synthesis, whereas toxic 16:1Δ9 was not and required elongation to 18:1Δ11 prior to incorporation. However, blocking fatty acid metabolism using inhibitors to prevent acyl-acyl carrier protein formation or glycerol-phosphate acyltransferase activity did not increase the toxicity of 18:1Δ9, indicating that inefficient metabolism did not play a determinant role in fatty acid toxicity. Nontoxic 18:1Δ9 was as toxic as 16:1Δ9 in a strain lacking wall teichoic acids and led to growth arrest and enhanced release of intracellular contents. Thus, wall teichoic acids contribute to the structure-specific antimicrobial effects of unsaturated fatty acids. The ability of poorly metabolized 16:1 isomers to penetrate the cell wall defenses is a weakness that has been exploited by the innate immune system to combat S. aureus.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Identification of a two-component fatty acid kinase responsible for host fatty acid incorporation by Staphylococcus aureus

Joshua B. Parsons; Tyler C. Broussard; Jeffrey L. Bose; Jason W. Rosch; Pamela Jackson; Chitra Subramanian; Charles O. Rock

Significance The enzymes required for the incorporation of host fatty acids into the membrane phospholipids of Gram-positive bacterial pathogens are unknown. Fatty acid kinase (Fak) is a new enzyme in lipid metabolism that requires two proteins to form acyl-phosphate: an ATP binding-domain protein (FakA) that interacts with a fatty acid binding protein (FakB). The analysis of Staphylococcus aureus mutants reveals that Fak is essential for phospholipid synthesis from extracellular fatty acids and also impacts the transcription of numerous virulence factors. This study reveals the function for two large bacterial protein families and their essential role in host fatty acid metabolism by pathogens, and connects Fak to the regulation of virulence factor transcription in S. aureus. Extracellular fatty acid incorporation into the phospholipids of Staphylococcus aureus occurs via fatty acid phosphorylation. We show that fatty acid kinase (Fak) is composed of two dissociable protein subunits encoded by separate genes. FakA provides the ATP binding domain and interacts with two distinct FakB proteins to produce acyl-phosphate. The FakBs are fatty acid binding proteins that exchange bound fatty acid/acyl-phosphate with fatty acid/acyl-phosphate presented in detergent micelles or liposomes. The ΔfakA and ΔfakB1 ΔfakB2 strains were unable to incorporate extracellular fatty acids into phospholipid. FakB1 selectively bound saturated fatty acids whereas FakB2 preferred unsaturated fatty acids. Affymetrix array showed a global perturbation in the expression of virulence genes in the ΔfakA strain. The severe deficiency in α-hemolysin protein secretion in ΔfakA and ΔfakB1 ΔfakB2 mutants coupled with quantitative mRNA measurements showed that fatty acid kinase activity was required to support virulence factor transcription. These data reveal the function of two conserved gene families, their essential role in the incorporation of host fatty acids by Gram-positive pathogens, and connects fatty acid kinase to the regulation of virulence factor transcription in S. aureus.


Molecular Microbiology | 2014

Incorporation of extracellular fatty acids by a fatty acid kinase-dependent pathway in Staphylococcus aureus.

Joshua B. Parsons; Matthew W. Frank; Pamela Jackson; Chitra Subramanian; Charles O. Rock

Acyl‐CoA and acyl‐acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram‐negative bacteria. However, Gram‐positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn‐glycerol‐3‐phosphate by PlsY using an acyl‐phosphate (acyl‐PO4) intermediate. PlsX generates acyl‐PO4 from the acyl‐ACP end‐products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1‐position and endogenous acyl groups were channeled into the 2‐position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl‐ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP‐dependent fatty acid kinase activity, and the acyl‐PO4 was converted to acyl‐ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids.


Antimicrobial Agents and Chemotherapy | 2013

Perturbation of Staphylococcus aureus Gene Expression by the Enoyl-Acyl Carrier Protein Reductase Inhibitor AFN-1252

Joshua B. Parsons; Maciej Kukula; Pamela Jackson; Mark Pulse; Jerry W. Simecka; David Valtierra; William J. Weiss; Nachum Kaplan; Charles O. Rock

ABSTRACT This study examines the alteration in Staphylococcus aureus gene expression following treatment with the type 2 fatty acid synthesis inhibitor AFN-1252. An Affymetrix array study showed that AFN-1252 rapidly increased the expression of fatty acid synthetic genes and repressed the expression of virulence genes controlled by the SaeRS 2-component regulator in exponentially growing cells. AFN-1252 did not alter virulence mRNA levels in a saeR deletion strain or in strain Newman expressing a constitutively active SaeS kinase. AFN-1252 caused a more pronounced increase in fabH mRNA levels in cells entering stationary phase, whereas the depression of virulence factor transcription was attenuated. The effect of AFN-1252 on gene expression in vivo was determined using a mouse subcutaneous granuloma infection model. AFN-1252 was therapeutically effective, and the exposure (area under the concentration-time curve from 0 to 48 h [AUC0–48]) of AFN-1252 in the pouch fluid was comparable to the plasma levels in orally dosed animals. The inhibition of fatty acid biosynthesis by AFN-1252 in the infected pouches was signified by the substantial and sustained increase in fabH mRNA levels in pouch-associated bacteria, whereas depression of virulence factor mRNA levels in the AFN-1252-treated pouch bacteria was not as evident as it was in exponentially growing cells in vitro. The trends in fabH and virulence factor gene expression in the animal were similar to those in slower-growing bacteria in vitro. These data indicate that the effects of AFN-1252 on virulence factor gene expression depend on the physiological state of the bacteria.


Antimicrobial Agents and Chemotherapy | 2013

Staphylococcus aureus Fatty Acid Auxotrophs do not Proliferate in Mice

Joshua B. Parsons; Matthew W. Frank; Jason W. Rosch; Charles O. Rock

ABSTRACT Inactivation of acetyl-coenzyme A (acetyl-CoA) carboxylase confers resistance to fatty acid synthesis inhibitors in Staphylococcus aureus on media supplemented with fatty acids. The addition of anteiso-fatty acids (1 mM) plus lipoic acid supports normal growth of ΔaccD strains, but supplementation with mammalian fatty acids was less efficient. Mice infected with strain RN6930 developed bacteremia, but bacteria were not detected in mice infected with its ΔaccD derivative. S. aureus bacteria lacking acetyl-CoA carboxylase can be propagated in vitro but were unable to proliferate in mice, suggesting that the acquisition of inactivating mutations in this enzyme is not a mechanism for the evasion of fatty acid synthesis inhibitors.


Antimicrobial Agents and Chemotherapy | 2015

FabH Mutations Confer Resistance to FabF-Directed Antibiotics in Staphylococcus aureus

Joshua B. Parsons; Jiangwei Yao; Matthew W. Frank; Charles O. Rock

ABSTRACT Delineating the mechanisms for genetically acquired antibiotic resistance is a robust approach to target validation and anticipates the evolution of clinical drug resistance. This study defines a spectrum of mutations in fabH that render Staphylococcus aureus resistant to multiple natural products known to inhibit the elongation condensing enzyme (FabF) of bacterial type II fatty acid synthesis. Twenty independently isolated clones resistant to platensimycin, platencin, or thiolactomycin were isolated. All mutants selected against one antibiotic were cross-resistant to the other two antibiotics. Mutations were not detected in fabF, but the resistant strains harbored missense mutations in fabH. The altered amino acids clustered in and around the FabH active-site tunnel. The mutant FabH proteins were catalytically compromised based on the low activities of the purified enzymes, a fatty acid-dependent growth phenotype, and elevated expression of the fabHF operon in the mutant strains. Independent manipulation of fabF and fabH expression levels showed that the FabH/FabF activity ratio was a major determinant of antibiotic sensitivity. Missense mutations that reduce FabH activity are sufficient to confer resistance to multiple antibiotics that bind to the FabF acyl-enzyme intermediate in S. aureus.


Molecular Microbiology | 2015

A thioesterase bypasses the requirement for exogenous fatty acids in the plsX deletion of Streptococcus pneumoniae

Joshua B. Parsons; Matthew W. Frank; Marc J. Eleveld; Joost Schalkwijk; Tyler C. Broussard; Marien I. de Jonge; Charles O. Rock

PlsX is an acyl‐acyl carrier protein (ACP):phosphate transacylase that interconverts the two acyl donors in Gram‐positive bacterial phospholipid synthesis. The deletion of plsX in Staphylococcus aureus results in a requirement for both exogenous fatty acids and de novo type II fatty acid biosynthesis. Deletion of plsX (SP0037) in Streptococcus pneumoniae did not result in an auxotrophic phenotype. The ΔplsX S. pneumoniae strain was refractory to myristic acid‐dependent growth arrest, and unlike the wild‐type strain, was susceptible to fatty acid synthesis inhibitors in the presence of exogenous oleate. The ΔplsX strain contained longer chain saturated fatty acids imparting a distinctly altered phospholipid molecular species profile. An elevated pool of 18‐ and 20‐carbon saturated fatty acids was detected in the ΔplsX strain. A S. pneumoniae thioesterase (TesS, SP1408) hydrolyzed acyl‐ACP in vitro, and the ΔtesS ΔplsX double knockout strain was a fatty acid auxotroph. Thus, the TesS thioesterase hydrolyzed the accumulating acyl‐ACP in the ΔplsX strain to liberate fatty acids that were activated by fatty acid kinase to bypass a requirement for extracellular fatty acid. This work identifies tesS as the gene responsible for the difference in exogenous fatty acid growth requirement of the ΔplsX strains of S. aureus and S. pneumoniae.

Collaboration


Dive into the Joshua B. Parsons's collaboration.

Top Co-Authors

Avatar

Charles O. Rock

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Matthew W. Frank

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Pamela Jackson

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jiangwei Yao

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Chitra Subramanian

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

David Valtierra

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Jason W. Rosch

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jerry W. Simecka

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Maciej Kukula

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Tyler C. Broussard

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge