Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua Bostwick is active.

Publication


Featured researches published by Joshua Bostwick.


Physics of Fluids | 2009

Capillary oscillations of a constrained liquid drop

Joshua Bostwick; Paul H. Steen

An inviscid spherical liquid drop held by surface tension exhibits linear oscillations of a characteristic frequency and mode shape (Rayleigh oscillations). If the drop is pinned on a circle of contact the mode shapes change and the frequencies are shifted. The linear problem of inviscid, axisymmetric, volume-preserving oscillations of a liquid drop constrained by pinning along a latitude is solved here. The formulation gives rise to an integrodifferential boundary value problem, similar to that for Rayleigh oscillations, and for oscillations of a drop in contact with a spherical bowl [M. Strani and F. Sabetta, J. Fluid Mech. 141, 233 (1984)], only more constrained. A spectral method delivers a truncated solution to the eigenvalue problem. A numerical routine has been used to generate the eigenfrequencies/eigenmodes as a function of the location of the pinned circle of constraint. The effect of pinning the drop is to introduce a new low-frequency eigenmode. The center-of-mass motion, important in applicat...


Physical Review E | 2013

Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops.

Chun-Ti Chang; Joshua Bostwick; Paul H. Steen; Susan Daniel

In our fluid dynamics video, we demonstrate our method of visualizing and identifying various mode shapes of mechanically oscillated sessile drops. By placing metal mesh under an oscillating drop and projecting light from below, the drops shape is visualized by the visually deformed mesh pattern seen in the top view. The observed modes are subsequently identified by their number of layers and sectors. An alternative identification associates them with spherical harmonics, as demonstrated in the tutorial. Clips of various observed modes are presented, followed by a 10-second quiz of mode identification.


Journal of Fluid Mechanics | 2010

Stability of constrained cylindrical interfaces and the torus lift of Plateau–Rayleigh

Joshua Bostwick; Paul H. Steen

Surface tension acting at a cylindrical interface holds an underlying liquid in motionless equilibrium. This static base state is subject to dynamic capillary instability, including Plateau–Rayleigh breakup. If the interface is partially supported by a cylindrical cup-like solid, the extent of the wetting contact can significantly influence the dynamics and the stability of the configuration. The equation for the motion of small disturbances is formulated as an eigenvalue equation on linear operators. A solution is constructed on a constrained function space using a Rayleigh–Ritz procedure. The influence of the extent-of-constraint on the dispersion relation and on modal structures is reported. In the extreme, the support reduces to a wire, aligned axially, and just touching the interface. From prior work, this constraint is known to stabilize the Plateau–Rayleigh limit by some 13 %. We report the wavenumber of maximum growth and estimate the time to breakup. The constraint is then bent in-plane to add a weak secondary curvature to the now nearly cylindrical base state. This is referred to as the torus lift of the cylinder. The static stability of these toroidal equilibria, calculated using a perturbation approach, shows that the position of constraint is crucial – constraint can stabilize (outside) or destabilize (inside). The combined influence of secondary curvature and wire constraint on the Plateau– Rayleigh limit is tracked. Finally, attention is restricted to constraints that yield a lens-like cylindrical meniscus. For these lenses, the torus lift is used as apparatus along with a symmetrization procedure to prove a large-amplitude static stability result. Our study is conveniently framed by a classic paper on rivulets by Davis (J. Fluid Mech., vol. 98, 1980, p. 225).


Physical Review E | 2013

Capillary fracture of soft gels

Joshua Bostwick; Karen E. Daniels

A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact line in a starburst pattern. In this paper, we characterize (i) the initiation process, in which the number of arms in the starburst is controlled by the ratio of the surface tension contrast to the gels elastic modulus, and (ii) the propagation dynamics showing that once fractures are initiated they propagate with a universal power law L[proportional]t(3/4). We develop a model for crack initiation by treating the gel as a linear elastic solid and computing the deformations within the substrate from the liquid-solid wetting forces. The elastic solution shows that both the location and the magnitude of the wetting forces are critical in providing a quantitative prediction for the number of fractures and, hence, an interpretation of the initiation of capillary fractures. This solution also reveals that the depth of the gel is an important factor in the fracture process, as it can help mitigate large surface tractions; this finding is confirmed with experiments. We then develop a model for crack propagation by considering the transport of an inviscid fluid into the fracture tip of an incompressible material and find that a simple energy-conservation argument can explain the observed material-independent power law. We compare predictions for both linear elastic and neo-Hookean solids, finding that the latter better explains the observed exponent.


arXiv: Fluid Dynamics | 2017

Wetting dynamics of a collapsing fluid hole

Joshua Bostwick; Joshua Dijksman; Michael Shearer

The collapse dynamics of an axisymmetric fluid cavity that wets the bottom of a rotating bucket bound by vertical sidewalls are studied. Lubrication theory is applied to the governing field equations for the thin film to yield an evolution equation that captures the effect of capillary, gravitational, and centrifugal forces on this converging flow. The focus is on the quasistatic spreading regime, whereby contact-line motion is governed by a constitutive law relating the contact-angle to the contact-line speed. Surface tension forces dominate the collapse dynamics for small holes with the collapse time appearing as a power law whose exponent compares favorably to experiments in the literature. Gravity accelerates the collapse process. Volume dependence is predicted and compared with experiment. Centrifugal forces slow the collapse process and lead to complex dynamics characterized by stalled spreading behavior that separates the large and small hole asymptotic regimes.


Journal of the Royal Society Interface | 2016

Elastic membranes in confinement

Joshua Bostwick; Michael J. Miksis; Stephen H. Davis

An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and coiled DNA, have fine internal structure in which a membrane (or elastic member) is geometrically ‘confined’ by another object. Here, the two-dimensional shape of an elastic membrane in a ‘confining’ box is studied by introducing a repulsive confinement pressure that prevents the membrane from intersecting the wall. The stage is set by contrasting confined and unconfined solutions. Continuation methods are then used to compute response diagrams, from which we identify the particular membrane mechanics that generate mitochondria-like shapes. Large confinement pressures yield complex response diagrams with secondary bifurcations and multiple turning points where modal identities may change. Regions in parameter space where such behaviour occurs are then mapped.


Soft Matter | 2018

Extracting the surface tension of soft gels from elastocapillary wave behavior

X. Shao; J. R. Saylor; Joshua Bostwick

Mechanically-excited waves appear as surface patterns on soft agarose gels. We experimentally quantify the dispersion relationship for these waves over a range of shear modulus in the transition zone where the surface energy (capillarity) is comparable to the elastic energy of the solid. Rayleigh waves and capillary-gravity waves are recovered as limiting cases. Gravitational forces appear as a pre-stress through the self-weight of the gel and are important. We show the experimental data fits well to a proposed dispersion relationship which differs from that typically used in studies of capillary to elastic wave crossover. We use this combined theoretical and experimental analysis to develop a new technique for measuring the surface tension of soft materials, which has been historically difficult to measure directly.


Soft Matter | 2016

Response of driven sessile drops with contact-line dissipation

Joshua Bostwick; Paul H. Steen

A partially-wetting sessile drop is driven by a sinusoidal pressure field that produces capillary waves on the liquid/gas interface. Response diagrams and phase shifts for the droplet, whose contact-line moves with contact-angle that is a smooth function of the contact line speed, are reported. Contact-line dissipation originating from the contact-line speed condition leads to damping for drops with finite contact-line mobility, even for inviscid fluids. The critical mobility and associated driving frequency to generate the largest contact-line dissipation is computed. Viscous dissipation is approximated using the irrotational flow and the critical Ohnesorge number bounding regions beyond which a given mode becomes over-damped is computed. Regions of modal coexistence where two modes can be simultaneously excited by a single forcing frequency are identified. Predictions compare favorably to related experiments on vibrated drops.


Soft Matter | 2014

Elastocapillary deformations on partially-wetting substrates: Rival contact-line models

Joshua Bostwick; Michael Shearer; Karen E. Daniels


Annual Review of Fluid Mechanics | 2015

Stability of Constrained Capillary Surfaces

Joshua Bostwick; Paul H. Steen

Collaboration


Dive into the Joshua Bostwick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen E. Daniels

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Shearer

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marion Grzelka

École normale supérieure de Cachan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge