Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anita L. DeStefano is active.

Publication


Featured researches published by Anita L. DeStefano.


JAMA | 2010

Genome-wide Analysis of Genetic Loci Associated With Alzheimer Disease

Sudha Seshadri; Annette L. Fitzpatrick; M. Arfan Ikram; Anita L. DeStefano; Vilmundur Gudnason; Mercè Boada; Joshua C. Bis; Albert V. Smith; Minerva M. Carassquillo; Jean Charles Lambert; Denise Harold; Elisabeth M.C. Schrijvers; Reposo Ramírez-Lorca; Stéphanie Debette; W. T. Longstreth; A. Cecile J. W. Janssens; V. Shane Pankratz; Jean-François Dartigues; Paul Hollingworth; Thor Aspelund; Isabel Hernández; Alexa Beiser; Lewis H. Kuller; Peter J. Koudstaal; Dennis W. Dickson; Christophe Tzourio; Richard Abraham; Carmen Antúnez; Yangchun Du; Jerome I. Rotter

CONTEXT Genome-wide association studies (GWAS) have recently identified CLU, PICALM, and CR1 as novel genes for late-onset Alzheimer disease (AD). OBJECTIVES To identify and strengthen additional loci associated with AD and confirm these in an independent sample and to examine the contribution of recently identified genes to AD risk prediction in a 3-stage analysis of new and previously published GWAS on more than 35,000 persons (8371 AD cases). DESIGN, SETTING, AND PARTICIPANTS In stage 1, we identified strong genetic associations (P < 10(-3)) in a sample of 3006 AD cases and 14,642 controls by combining new data from the population-based Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (1367 AD cases [973 incident]) with previously reported results from the Translational Genomics Research Institute and the Mayo AD GWAS. We identified 2708 single-nucleotide polymorphisms (SNPs) with P < 10(-3). In stage 2, we pooled results for these SNPs with the European AD Initiative (2032 cases and 5328 controls) to identify 38 SNPs (10 loci) with P < 10(-5). In stage 3, we combined data for these 10 loci with data from the Genetic and Environmental Risk in AD consortium (3333 cases and 6995 controls) to identify 4 SNPs with P < 1.7x10(-8). These 4 SNPs were replicated in an independent Spanish sample (1140 AD cases and 1209 controls). Genome-wide association analyses were completed in 2007-2008 and the meta-analyses and replication in 2009. MAIN OUTCOME MEASURE Presence of Alzheimer disease. RESULTS Two loci were identified to have genome-wide significance for the first time: rs744373 near BIN1 (odds ratio [OR],1.13; 95% confidence interval [CI],1.06-1.21 per copy of the minor allele; P = 1.59x10(-11)) and rs597668 near EXOC3L2/BLOC1S3/MARK4 (OR, 1.18; 95% CI, 1.07-1.29; P = 6.45x10(-9)). Associations of these 2 loci plus the previously identified loci CLU and PICALM with AD were confirmed in the Spanish sample (P < .05). However, although CLU and PICALM were confirmed to be associated with AD in this independent sample, they did not improve the ability of a model that included age, sex, and APOE to predict incident AD (improvement in area under the receiver operating characteristic curve from 0.847 to 0.849 in the Rotterdam Study and 0.702 to 0.705 in the Cardiovascular Health Study). CONCLUSIONS Two genetic loci for AD were found for the first time to reach genome-wide statistical significance. These findings were replicated in an independent population. Two recently reported associations were also confirmed. These loci did not improve AD risk prediction. While not clinically useful, they may implicate biological pathways useful for future research.


Nature Genetics | 2014

Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease

Michael A. Nalls; Nathan Pankratz; Christina M. Lill; Chuong B. Do; Dena Hernandez; Mohamad Saad; Anita L. DeStefano; Eleanna Kara; Jose Bras; Manu Sharma; Claudia Schulte; Margaux F. Keller; Sampath Arepalli; Christopher Letson; Connor Edsall; Hreinn Stefansson; Xinmin Liu; Hannah Pliner; Joseph H. Lee; Rong Cheng; M. Arfan Ikram; John P. A. Ioannidis; Georgios M. Hadjigeorgiou; Joshua C. Bis; Maria Martinez; Joel S. Perlmutter; Alison Goate; Karen Marder; Brian K. Fiske; Margaret Sutherland

We conducted a meta-analysis of Parkinsons disease genome-wide association studies using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were identified as having genome-wide significant association; these and 6 additional previously reported loci were then tested in an independent set of 5,353 cases and 5,551 controls. Of the 32 tested SNPs, 24 replicated, including 6 newly identified loci. Conditional analyses within loci showed that four loci, including GBA, GAK-DGKQ, SNCA and the HLA region, contain a secondary independent risk variant. In total, we identified and replicated 28 independent risk variants for Parkinsons disease across 24 loci. Although the effect of each individual locus was small, risk profile analysis showed substantial cumulative risk in a comparison of the highest and lowest quintiles of genetic risk (odds ratio (OR) = 3.31, 95% confidence interval (CI) = 2.55–4.30; P = 2 × 10−16). We also show six risk loci associated with proximal gene expression or DNA methylation.


Hypertension | 2000

Evidence for a Gene Influencing Blood Pressure on Chromosome 17 Genome Scan Linkage Results for Longitudinal Blood Pressure Phenotypes in Subjects From the Framingham Heart Study

Daniel Levy; Anita L. DeStefano; Martin G. Larson; Christopher J. O’Donnell; Richard P. Lifton; Haralambos Gavras; L. Adrienne Cupples; Richard H. Myers

Hypertension is a leading cause of morbidity and mortality. Efforts to identify hypertension genes have focused on 3 approaches: mendelian disorders, candidate genes, and genome-wide scans. Thus far, these efforts have not identified genes that contribute substantively to overall blood pressure (BP) variation in the community. A 10-centiMorgan (cM) density genome-wide scan was performed in the largest families from 2 generations of Framingham Heart Study participants. Heritability and linkage for long-term mean systolic and diastolic BP phenotypes were analyzed by use of solar software. Heritability estimates were based on BP measurements in 1593 families. Genotyping was performed on 1702 subjects from 332 large families, and BP data were available for 1585 (93%) genotyped subjects who contributed 12 588 longitudinal BP observations. The mean age was 47 years, and mean BP was 127/80 (systolic/diastolic) mm Hg. Long-term systolic and diastolic BP phenotypes had high heritability estimates, 0.57 and 0.56, respectively. For systolic BP, multipoint log-of-the-odds (LOD) scores >2.0 were located on chromosome 17 at 67 cM (LOD 4.7, P =0.0000016) and 94 cM (LOD 2.2). For diastolic BP, LOD scores >2.0 were identified on chromosome 17 (74 cM, LOD 2.1) and chromosome 18 (7 cM, LOD 2.1). Using a genome-wide scan, we found strong evidence for a BP quantitative trait locus on chromosome 17. Follow-up studies are warranted to identify the gene or genes in this quantitative trait locus that influence BP. Such knowledge could extend our understanding of the genetic basis of essential hypertension and have implications for the evaluation and treatment of patients with high BP.


The New England Journal of Medicine | 2009

Genomewide Association Studies of Stroke

M. Arfan Ikram; Sudha Seshadri; Joshua C. Bis; Myriam Fornage; Anita L. DeStefano; Yurii S. Aulchenko; Stéphanie Debette; Thomas Lumley; Aaron R. Folsom; Evita G. Van Den Herik; Michiel J. Bos; Alexa Beiser; Mary Cushman; Lenore J. Launer; Eyal Shahar; Maksim Struchalin; Yangchun Du; Nicole L. Glazer; Wayne D. Rosamond; Fernando Rivadeneira; Margaret Kelly-Hayes; Oscar L. Lopez; Josef Coresh; Albert Hofman; Charles DeCarli; Susan R. Heckbert; Peter J. Koudstaal; Qiong Yang; Nicholas L. Smith; Carlos S. Kase

BACKGROUND The genes underlying the risk of stroke in the general population remain undetermined. METHODS We carried out an analysis of genomewide association data generated from four large cohorts composing the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, including 19,602 white persons (mean [+/-SD] age, 63+/-8 years) in whom 1544 incident strokes (1164 ischemic strokes) developed over an average follow-up of 11 years. We tested the markers most strongly associated with stroke in a replication cohort of 2430 black persons with 215 incident strokes (191 ischemic strokes), another cohort of 574 black persons with 85 incident strokes (68 ischemic strokes), and 652 Dutch persons with ischemic stroke and 3613 unaffected persons. RESULTS Two intergenic single-nucleotide polymorphisms on chromosome 12p13 and within 11 kb of the gene NINJ2 were associated with stroke (P<5x10(-8)). NINJ2 encodes an adhesion molecule expressed in glia and shows increased expression after nerve injury. Direct genotyping showed that rs12425791 was associated with an increased risk of total (i.e., all types) and ischemic stroke, with hazard ratios of 1.30 (95% confidence interval [CI], 1.19 to 1.42) and 1.33 (95% CI, 1.21 to 1.47), respectively, yielding population attributable risks of 11% and 12% in the discovery cohorts. Corresponding hazard ratios were 1.35 (95% CI, 1.01 to 1.79; P=0.04) and 1.42 (95% CI, 1.06 to 1.91; P=0.02) in the large cohort of black persons and 1.17 (95% CI, 1.01 to 1.37; P=0.03) and 1.19 (95% CI, 1.01 to 1.41; P=0.04) in the Dutch sample; the results of an underpowered analysis of the smaller black cohort were nonsignificant. CONCLUSIONS A genetic locus on chromosome 12p13 is associated with an increased risk of stroke.


PLOS Genetics | 2012

Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics : The PDGene database

Christina M. Lill; Johannes T. Roehr; Matthew B. McQueen; Fotini K. Kavvoura; Sachin Bagade; Brit-Maren M. Schjeide; Leif Schjeide; Esther Meissner; Ute Zauft; Nicole C. Allen; Tian-Jing Liu; Marcel Schilling; Kari J. Anderson; Gary W. Beecham; Daniela Berg; Joanna M. Biernacka; Alexis Brice; Anita L. DeStefano; Chuong B. Do; Nicholas Eriksson; Stewart A. Factor; Matthew J. Farrer; Tatiana Foroud; Thomas Gasser; Taye H. Hamza; John Hardy; Peter Heutink; Erin M. Hill-Burns; Christine Klein; Jeanne C. Latourelle

More than 800 published genetic association studies have implicated dozens of potential risk loci in Parkinsons disease (PD). To facilitate the interpretation of these findings, we have created a dedicated online resource, PDGene, that comprehensively collects and meta-analyzes all published studies in the field. A systematic literature screen of ∼27,000 articles yielded 828 eligible articles from which relevant data were extracted. In addition, individual-level data from three publicly available genome-wide association studies (GWAS) were obtained and subjected to genotype imputation and analysis. Overall, we performed meta-analyses on more than seven million polymorphisms originating either from GWAS datasets and/or from smaller scale PD association studies. Meta-analyses on 147 SNPs were supplemented by unpublished GWAS data from up to 16,452 PD cases and 48,810 controls. Eleven loci showed genome-wide significant (P<5×10−8) association with disease risk: BST1, CCDC62/HIP1R, DGKQ/GAK, GBA, LRRK2, MAPT, MCCC1/LAMP3, PARK16, SNCA, STK39, and SYT11/RAB25. In addition, we identified novel evidence for genome-wide significant association with a polymorphism in ITGA8 (rs7077361, OR 0.88, P = 1.3×10−8). All meta-analysis results are freely available on a dedicated online database (www.pdgene.org), which is cross-linked with a customized track on the UCSC Genome Browser. Our study provides an exhaustive and up-to-date summary of the status of PD genetics research that can be readily scaled to include the results of future large-scale genetics projects, including next-generation sequencing studies.


Lancet Neurology | 2012

Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies.

Matthew Traylor; Martin Farrall; Elizabeth G. Holliday; Cathie Sudlow; Jemma C. Hopewell; Yu Ching Cheng; Myriam Fornage; M. Arfan Ikram; Rainer Malik; Steve Bevan; Unnur Thorsteinsdottir; Michael A. Nalls; W. T. Longstreth; Kerri L. Wiggins; Sunaina Yadav; Eugenio Parati; Anita L. DeStefano; Bradford B. Worrall; Steven J. Kittner; Muhammad Saleem Khan; Alex P. Reiner; Anna Helgadottir; Sefanja Achterberg; Israel Fernandez-Cadenas; Shérine Abboud; Reinhold Schmidt; Matthew Walters; Wei-Min Chen; E. Bernd Ringelstein; Martin O'Donnell

Summary Background Various genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes. Methods We meta-analysed data from 15 ischaemic stroke cohorts with a total of 12 389 individuals with ischaemic stroke and 62 004 controls, all of European ancestry. For the associations reaching genome-wide significance in METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every associated region. Replication of novel suggestive signals was done in 13 347 cases and 29 083 controls. Findings We verified previous associations for cardioembolic stroke near PITX2 (p=2·8×10−16) and ZFHX3 (p=2·28×10−8), and for large-vessel stroke at a 9p21 locus (p=3·32×10−5) and HDAC9 (p=2·03×10−12). Additionally, we verified that all associations were subtype specific. Conditional analysis in the three regions for which the associations reached genome-wide significance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one risk haplotype. We also identified 12 potentially novel loci at p<5×10−6. However, we were unable to replicate any of these novel associations in the replication cohort. Interpretation Our results show that, although genetic variants can be detected in patients with ischaemic stroke when compared with controls, all associations we were able to confirm are specific to a stroke subtype. This finding has two implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. Second, different genetic pathophysiological mechanisms seem to be associated with different stroke subtypes. Funding Wellcome Trust, UK Medical Research Council (MRC), Australian National and Medical Health Research Council, National Institutes of Health (NIH) including National Heart, Lung and Blood Institute (NHLBI), the National Institute on Aging (NIA), the National Human Genome Research Institute (NHGRI), and the National Institute of Neurological Disorders and Stroke (NINDS).


BMC Medical Genetics | 2007

The Framingham Heart Study 100K SNP Genome-Wide Association Study Resource: Overview of 17 Phenotype Working Group Reports

L. Adrienne Cupples; Heather T Arruda; Emelia J. Benjamin; Ralph B. D'Agostino; Serkalem Demissie; Anita L. DeStefano; Josée Dupuis; Kathleen Falls; Caroline S. Fox; Daniel J. Gottlieb; Diddahally R. Govindaraju; Chao-Yu Guo; Nancy L. Heard-Costa; Shih-Jen Hwang; Sekar Kathiresan; Douglas P. Kiel; Jason M. Laramie; Martin G. Larson; Daniel Levy; Chunyu Liu; Kathryn L. Lunetta; Matthew D Mailman; Alisa K. Manning; James B. Meigs; Joanne M. Murabito; Christopher Newton-Cheh; George T. O'Connor; Christopher J. O'Donnell; Mona Pandey; Sudha Seshadri

BackgroundThe Framingham Heart Study (FHS), founded in 1948 to examine the epidemiology of cardiovascular disease, is among the most comprehensively characterized multi-generational studies in the world. Many collected phenotypes have substantial genetic contributors; yet most genetic determinants remain to be identified. Using single nucleotide polymorphisms (SNPs) from a 100K genome-wide scan, we examine the associations of common polymorphisms with phenotypic variation in this community-based cohort and provide a full-disclosure, web-based resource of results for future replication studies.MethodsAdult participants (n = 1345) of the largest 310 pedigrees in the FHS, many biologically related, were genotyped with the 100K Affymetrix GeneChip. These genotypes were used to assess their contribution to 987 phenotypes collected in FHS over 56 years of follow up, including: cardiovascular risk factors and biomarkers; subclinical and clinical cardiovascular disease; cancer and longevity traits; and traits in pulmonary, sleep, neurology, renal, and bone domains. We conducted genome-wide variance components linkage and population-based and family-based association tests.ResultsThe participants were white of European descent and from the FHS Original and Offspring Cohorts (examination 1 Offspring mean age 32 ± 9 years, 54% women). This overview summarizes the methods, selected findings and limitations of the results presented in the accompanying series of 17 manuscripts. The presented association results are based on 70,897 autosomal SNPs meeting the following criteria: minor allele frequency ≥ 10%, genotype call rate ≥ 80%, Hardy-Weinberg equilibrium p-value ≥ 0.001, and satisfying Mendelian consistency. Linkage analyses are based on 11,200 SNPs and short-tandem repeats. Results of phenotype-genotype linkages and associations for all autosomal SNPs are posted on the NCBI dbGaP website at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007.ConclusionWe have created a full-disclosure resource of results, posted on the dbGaP website, from a genome-wide association study in the FHS. Because we used three analytical approaches to examine the association and linkage of 987 phenotypes with thousands of SNPs, our results must be considered hypothesis-generating and need to be replicated. Results from the FHS 100K project with NCBI web posting provides a resource for investigators to identify high priority findings for replication.


BMC Medical Genetics | 2007

Genetic correlates of brain aging on MRI and cognitive test measures: a genome-wide association and linkage analysis in the Framingham Study.

Sudha Seshadri; Anita L. DeStefano; Rhoda Au; Joseph M. Massaro; Alexa Beiser; Margaret Kelly-Hayes; Carlos S. Kase; Ralph B. D'Agostino; Charles DeCarli; Larry D. Atwood; Philip A. Wolf

BackgroundBrain magnetic resonance imaging (MRI) and cognitive tests can identify heritable endophenotypes associated with an increased risk of developing stroke, dementia and Alzheimers disease (AD). We conducted a genome-wide association (GWA) and linkage analysis exploring the genetic basis of these endophenotypes in a community-based sample.MethodsA total of 705 stroke- and dementia-free Framingham participants (age 62 +9 yrs, 50% male) who underwent volumetric brain MRI and cognitive testing (1999–2002) were genotyped. We used linear models adjusting for first degree relationships via generalized estimating equations (GEE) and family based association tests (FBAT) in additive models to relate qualifying single nucleotide polymorphisms (SNPs, 70,987 autosomal on Affymetrix 100K Human Gene Chip with minor allele frequency ≥ 0.10, genotypic call rate ≥ 0.80, and Hardy-Weinberg equilibrium p-value ≥ 0.001) to multivariable-adjusted residuals of 9 MRI measures including total cerebral brain (TCBV), lobar, ventricular and white matter hyperintensity (WMH) volumes, and 6 cognitive factors/tests assessing verbal and visuospatial memory, visual scanning and motor speed, reading, abstract reasoning and naming. We determined multipoint identity-by-descent utilizing 10,592 informative SNPs and 613 short tandem repeats and used variance component analyses to compute LOD scores.ResultsThe strongest gene-phenotype association in FBAT analyses was between SORL1 (rs1131497; p = 3.2 × 10-6) and abstract reasoning, and in GEE analyses between CDH4 (rs1970546; p = 3.7 × 10-8) and TCBV. SORL1 plays a role in amyloid precursor protein processing and has been associated with the risk of AD. Among the 50 strongest associations (25 each by GEE and FBAT) were other biologically interesting genes. Polymorphisms within 28 of 163 candidate genes for stroke, AD and memory impairment were associated with the endophenotypes studied at p < 0.001. We confirmed our previously reported linkage of WMH on chromosome 4 and describe linkage of reading performance to a marker on chromosome 18 (GATA11A06), previously linked to dyslexia (LOD scores = 2.2 and 5.1).ConclusionOur results suggest that genes associated with clinical neurological disease also have detectable effects on subclinical phenotypes. These hypothesis generating data illustrate the use of an unbiased approach to discover novel pathways that may be involved in brain aging, and could be used to replicate observations made in other studies.


Neurology | 2004

APOE ε4 is associated with obstructive sleep apnea/hypopnea: The Sleep Heart Health Study

Daniel J. Gottlieb; Anita L. DeStefano; D. J. Foley; Emmanuel Mignot; Susan Redline; Rachel J. Givelber; Terry Young

Background:Obstructive sleep apnea/hypopnea (OSAH) has a strong heritable component, although its genetic basis remains largely unknown. One epidemiologic study found a significant association between the APOE &egr;4 allele and OSAH in middle-aged adults, a finding that was not replicated in a cohort of elderly adults. The objective of this study was to further examine the association of the APOE &egr;4 allele with OSAH in a community-dwelling cohort, exploring age dependency of the association. Methods:A genetic association study was performed, nested within a prospective cohort study of the cardiovascular consequences of OSAH. Unattended, in-home nocturnal polysomnography was used to measure apnea-hypopnea index (AHI) in 1,775 participants age 40 to 100 years. OSAH was defined as an AHI ≥ 15. The relation of APOE genotype to prevalent OSAH was analyzed using generalized estimating equations to account for non-independent observations of individuals from the same sibship. Results:At least one APOE &egr;4 allele was present in 25% of subjects, with 1.3% &egr;4/&egr;4 homozygotes. The prevalence of OSAH was 19%. After adjustment for age, sex, and BMI, the presence of any APOE &egr;4 allele was associated with increased odds of OSAH (OR 1.41, 95% CI 1.06 to 1.87, p = 0.02). The effect was approximately twice as great in subjects <75 (OR 1.61, CI 1.02 to 2.54) as in those ≥75 years old (OR 1.32, CI 0.91 to 1.90). Exploratory analyses revealed that the strongest effect of APOE &egr;4 was in subjects age <65 (OR 3.08, CI 1.43 to 6.64), and was stronger in those with hypertension or cardiovascular disease than in those without. Conclusion:The APOE &egr;4 allele is associated with increased risk of OSAH, particularly in individuals under age 65. The mechanisms underlying this association are uncertain. Age-dependency of the APOE-OSAH association may explain previous conflicting results.


Nature Genetics | 2012

Common variants at 12q14 and 12q24 are associated with hippocampal volume

Joshua C. Bis; Charles DeCarli; Albert V. Smith; Fedde van der Lijn; Fabrice Crivello; Myriam Fornage; Stéphanie Debette; Joshua M. Shulman; Helena Schmidt; Velandai Srikanth; Maaike Schuur; Lei Yu; Seung Hoan Choi; Sigurdur Sigurdsson; Benjamin F.J. Verhaaren; Anita L. DeStefano; Jean Charles Lambert; Clifford R. Jack; Maksim Struchalin; Jim Stankovich; Carla A. Ibrahim-Verbaas; Debra A. Fleischman; Alex Zijdenbos; Tom den Heijer; Bernard Mazoyer; Laura H. Coker; Christian Enzinger; Patrick Danoy; Najaf Amin; Konstantinos Arfanakis

Aging is associated with reductions in hippocampal volume that are accelerated by Alzheimers disease and vascular risk factors. Our genome-wide association study (GWAS) of dementia-free persons (n = 9,232) identified 46 SNPs at four loci with P values of <4.0 × 10−7. In two additional samples (n = 2,318), associations were replicated at 12q14 within MSRB3-WIF1 (discovery and replication; rs17178006; P = 5.3 × 10−11) and at 12q24 near HRK-FBXW8 (rs7294919; P = 2.9 × 10−11). Remaining associations included one SNP at 2q24 within DPP4 (rs6741949; P = 2.9 × 10−7) and nine SNPs at 9p33 within ASTN2 (rs7852872; P = 1.0 × 10−7); along with the chromosome 12 associations, these loci were also associated with hippocampal volume (P < 0.05) in a third younger, more heterogeneous sample (n = 7,794). The SNP in ASTN2 also showed suggestive association with decline in cognition in a largely independent sample (n = 1,563). These associations implicate genes related to apoptosis (HRK), development (WIF1), oxidative stress (MSR3B), ubiquitination (FBXW8) and neuronal migration (ASTN2), as well as enzymes targeted by new diabetes medications (DPP4), indicating new genetic influences on hippocampal size and possibly the risk of cognitive decline and dementia.

Collaboration


Dive into the Anita L. DeStefano's collaboration.

Top Co-Authors

Avatar

Joshua C. Bis

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Myriam Fornage

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Arfan Ikram

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge