Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua D. Chandler is active.

Publication


Featured researches published by Joshua D. Chandler.


Free Radical Biology and Medicine | 2015

The cysteine proteome.

Young-Mi Go; Joshua D. Chandler; Dean P. Jones

The cysteine (Cys) proteome is a major component of the adaptive interface between the genome and the exposome. The thiol moiety of Cys undergoes a range of biologic modifications enabling biological switching of structure and reactivity. These biological modifications include sulfenylation and disulfide formation, formation of higher oxidation states, S-nitrosylation, persulfidation, metalation, and other modifications. Extensive knowledge about these systems and their compartmentalization now provides a foundation to develop advanced integrative models of Cys proteome regulation. In particular, detailed understanding of redox signaling pathways and sensing networks is becoming available to allow the discrimination of network structures. This research focuses attention on the need for atlases of Cys modifications to develop systems biology models. Such atlases will be especially useful for integrative studies linking the Cys proteome to imaging and other omics platforms, providing a basis for improved redox-based therapeutics. Thus, a framework is emerging to place the Cys proteome as a complement to the quantitative proteome in the omics continuum connecting the genome to the exposome.


Free Radical Research | 2015

Biochemical mechanisms and therapeutic potential of pseudohalide thiocyanate in human health.

Joshua D. Chandler; Brian J. Day

Abstract Thiocyanate (SCN−) is a ubiquitous molecule in mammalian biology, reaching up to mM concentrations in extracellular fluids. Two- electron oxidation of SCN− by H2O2 produces hypothiocyanous acid (HOSCN), a potent anti-microbial species. This reaction is catalyzed by chordate peroxidases (e.g., myeloperoxidase and lactoperoxidase), occurring in human secretory mucosa, including the oral cavity, airway, and alimentary tract, and regulates resident and transient flora as part of innate immunity. Increasing SCN− levels limits the concentrations of a family of 2-electron oxidants (H2O2, hypohalous acids, and haloamines) in favor of HOSCN formation, altering the oxidative impact on host tissue by substitution of repairable thiol and selenol oxidations instead of biomolecule degradation. This fine-tuning of inflammatory oxidation paradoxically associates with maintained host defense and decreased host injury during infections, due in part to phylogenetic differences in the thioredoxin reductase system between mammals and their pathogens. These differences could be exploited by pharmacologic use of SCN−. Recent preclinical studies have identified anti-microbial and anti-inflammatory effects of SCN− in pulmonary and cardiovascular animal models, with implications for treatment of infectious lung disease and atherogenesis. Further research is merited to expand on these findings and identify other diseases where SCN− may be of use. High oral bioavailability and an increased knowledge of the biochemical effects of SCN− on a subset of pro-inflammatory reactions suggest clinical utility.


Free Radical Biology and Medicine | 2015

Anticancer therapeutic potential of Mn porphyrin/ascorbate system

Artak Tovmasyan; Romulo S. Sampaio; Mary-Keara Boss; Jacqueline C Bueno-Janice; Bader H. Bader; Milini Thomas; Júlio S. Rebouças; Michael Orr; Joshua D. Chandler; Young-Mi Go; Dean P. Jones; Talaignair N. Venkatraman; Sinisa Haberle; Natalia Kyui; Christopher D. Lascola; Mark W. Dewhirst; Ivan Spasojevic; Ludmil Benov; Ines Batinic-Haberle

Ascorbate (Asc) as a single agent suppressed growth of several tumor cell lines in a mouse model. It has been tested in a Phase I Clinical Trial on pancreatic cancer patients where it exhibited no toxicity to normal tissue yet was of only marginal efficacy. The mechanism of its anticancer effect was attributed to the production of tumoricidal hydrogen peroxide (H2O2) during ascorbate oxidation catalyzed by endogenous metalloproteins. The amount of H2O2 could be maximized with exogenous catalyst that has optimized properties for such function and is localized within tumor. Herein we studied 14 Mn porphyrins (MnPs) which differ vastly with regards to their redox properties, charge, size/bulkiness and lipophilicity. Such properties affect the in vitro and in vivo ability of MnPs (i) to catalyze ascorbate oxidation resulting in the production of H2O2; (ii) to subsequently employ H2O2 in the catalysis of signaling proteins oxidations affecting cellular survival pathways; and (iii) to accumulate at site(s) of interest. The metal-centered reduction potential of MnPs studied, E1/2 of Mn(III)P/Mn(II)P redox couple, ranged from -200 to +350 mV vs NHE. Anionic and cationic, hydrophilic and lipophilic as well as short- and long-chained and bulky compounds were explored. Their ability to catalyze ascorbate oxidation, and in turn cytotoxic H2O2 production, was explored via spectrophotometric and electrochemical means. Bell-shape structure-activity relationship (SAR) was found between the initial rate for the catalysis of ascorbate oxidation, vo(Asc)ox and E1/2, identifying cationic Mn(III) N-substituted pyridylporphyrins with E1/2>0 mV vs NHE as efficient catalysts for ascorbate oxidation. The anticancer potential of MnPs/Asc system was subsequently tested in cellular (human MCF-7, MDA-MB-231 and mouse 4T1) and animal models of breast cancer. At the concentrations where ascorbate (1mM) and MnPs (1 or 5 µM) alone did not trigger any alteration in cell viability, combined treatment suppressed cell viability up to 95%. No toxicity was observed with normal human breast epithelial HBL-100 cells. Bell-shape relationship, essentially identical to vo(Asc)oxvs E1/2, was also demonstrated between MnP/Asc-controlled cytotoxicity and E1/2-controlled vo(Asc)ox. Magnetic resonance imaging studies were conducted to explore the impact of ascorbate on T1-relaxivity. The impact of MnP/Asc on intracellular thiols and on GSH/GSSG and Cys/CySS ratios in 4T1 cells was assessed and cellular reduction potentials were calculated. The data indicate a significant increase in cellular oxidative stress induced by MnP/Asc. Based on vo(Asc)oxvs E1/2 relationships and cellular toxicity, MnTE-2-PyP(5+) was identified as the best catalyst among MnPs studied. Asc and MnTE-2-PyP(5+) were thus tested in a 4T1 mammary mouse flank tumor model. The combination of ascorbate (4 g/kg) and MnTE-2-PyP(5+) (0.2mg/kg) showed significant suppression of tumor growth relative to either MnTE-2-PyP(5+) or ascorbate alone. About 7-fold higher accumulation of MnTE-2-PyP(5+) in tumor vs normal tissue was found to contribute largely to the anticancer effect.


Toxicological Sciences | 2015

Low-Dose Cadmium Causes Metabolic and Genetic Dysregulation Associated With Fatty Liver Disease in Mice

Young-Mi Go; Roy L. Sutliff; Joshua D. Chandler; Rahman Khalidur; Bum-Yong Kang; Frank A. Anania; Michael Orr; Li Hao; Bruce A. Fowler; Dean P. Jones

Cadmium (Cd) is present in food at low levels and accumulates in humans throughout life because it is not effectively excreted. Cd from smoking or occupational exposure shows adverse effects on health, but the mechanistic effect of Cd at low dietary intake levels is poorly studied. Epidemiology studies found that nonalcoholic fatty liver disease (NAFLD), common in U.S. adults, is associated with Cd burden. In cell studies, we found that environmental low-dose Cd oxidized proteins and stimulated inflammatory signaling. However, little is known about low-dose Cd effects on liver function and associated metabolic pathways in vivo. We investigated effects of low-level Cd exposure on liver gene transcripts, metabolites, and associated metabolic pathways and function after challenging mice with Cd (10 mg/l) by drinking water. Results showed liver Cd in treated mice was similar to adult humans without occupational or smoking exposures and 10-fold higher than control mouse values. Pathway analysis of significantly altered liver genes and metabolites mapped to functional pathways of lipid metabolism, cell death and mitochondrial oxidative phosphorylation. These are well-recognized pathways associated with NAFLD. Cd-treated mice had higher liver enzymes in plasma and a trend toward fat accumulation in liver. To verify low-dose Cd-induced stimulation of cell death pathways, phosphorylation of c-Jun N-terminal kinase (JNK) was examined in cultured hepatic cells. Consistent with mouse liver data, low-dose Cd stimulated JNK activation. Together, the results show that low-dose Cd exposure causes liver function changes consistent with a role in NAFLD and possibly also nonalcoholic steatohepatitis.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2016

Metabolic pathways of lung inflammation revealed by high-resolution metabolomics (HRM) of H1N1 influenza virus infection in mice

Joshua D. Chandler; Xin Hu; Eun-Ju Ko; Soojin Park; Young-Tae Lee; Michael Orr; Jolyn Fernandes; Karan Uppal; Sang-Moo Kang; Dean P. Jones; Young-Mi Go

Influenza is a significant health concern worldwide. Viral infection induces local and systemic activation of the immune system causing attendant changes in metabolism. High-resolution metabolomics (HRM) uses advanced mass spectrometry and computational methods to measure thousands of metabolites inclusive of most metabolic pathways. We used HRM to identify metabolic pathways and clusters of association related to inflammatory cytokines in lungs of mice with H1N1 influenza virus infection. Infected mice showed progressive weight loss, decreased lung function, and severe lung inflammation with elevated cytokines [interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ] and increased oxidative stress via cysteine oxidation. HRM showed prominent effects of influenza virus infection on tryptophan and other amino acids, and widespread effects on pathways including purines, pyrimidines, fatty acids, and glycerophospholipids. A metabolome-wide association study (MWAS) of the aforementioned inflammatory cytokines was used to determine the relationship of metabolic responses to inflammation during infection. This cytokine-MWAS (cMWAS) showed that metabolic associations consisted of distinct and shared clusters of 396 metabolites highly correlated with inflammatory cytokines. Strong negative associations of selected glycosphingolipid, linoleate, and tryptophan metabolites with IFN-γ contrasted strong positive associations of glycosphingolipid and bile acid metabolites with IL-1β, TNF-α, and IL-10. Anti-inflammatory cytokine IL-10 had strong positive associations with vitamin D, purine, and vitamin E metabolism. The detailed metabolic interactions with cytokines indicate that targeted metabolic interventions may be useful during life-threatening crises related to severe acute infection and inflammation.


American Journal of Respiratory Cell and Molecular Biology | 2015

Sarcoendoplasmic Reticulum Ca2+ ATPase. A Critical Target in Chlorine Inhalation–Induced Cardiotoxicity

Shama Ahmad; Aftab Ahmad; Tara B. Hendry-Hofer; Joan E. Loader; William C. Claycomb; Olivier Mozziconacci; Christian Schöneich; Nichole Reisdorph; Roger L. Powell; Joshua D. Chandler; Brian J. Day; Livia A. Veress; Carl W. White

Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation-induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration-approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia-reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure.


Physiological Reports | 2016

Low-dose oral cadmium increases airway reactivity and lung neuronal gene expression in mice

Joshua D. Chandler; Cherry Wongtrakool; Sophia Banton; Shuzhao Li; Michael Orr; Dana Boyd Barr; David C. Neujahr; Roy L. Sutliff; Young-Mi Go; Dean P. Jones

Inhalation of cadmium (Cd) is associated with lung diseases, but less is known concerning pulmonary effects of Cd found in the diet. Cd has a decades‐long half‐life in humans and significant bioaccumulation occurs with chronic dietary intake. We exposed mice to low‐dose CdCl2 (10 mg/L in drinking water) for 20 weeks, which increased lung Cd to a level similar to that of nonoccupationally exposed adult humans. Cd‐treated mice had increased airway hyperresponsiveness to methacholine challenge, and gene expression array showed that Cd altered the abundance of 443 mRNA transcripts in mouse lung. In contrast to higher doses, low‐dose Cd did not elicit increased metallothionein transcripts in lung. To identify pathways most affected by Cd, gene set enrichment of transcripts was analyzed. Results showed that major inducible targets of low‐dose Cd were neuronal receptors represented by enriched olfactory, glutamatergic, cholinergic, and serotonergic gene sets. Olfactory receptors regulate chemosensory function and airway hypersensitivity, and these gene sets were the most enriched. Targeted metabolomics analysis showed that Cd treatment also increased metabolites in pathways of glutamatergic (glutamate), serotonergic (tryptophan), cholinergic (choline), and catecholaminergic (tyrosine) receptors in the lung tissue. Protein abundance measurements showed that the glutamate receptor GRIN2A was increased in mouse lung tissue. Together, these results show that in mice, oral low‐dose Cd increased lung Cd to levels comparable to humans, increased airway hyperresponsiveness and disrupted neuronal pathways regulating bronchial tone. Therefore, dietary Cd may promote or worsen airway hyperresponsiveness in multiple lung diseases including asthma.


Toxicological Sciences | 2017

From the Cover: Manganese Stimulates Mitochondrial H2O2 Production in SH-SY5Y Human Neuroblastoma Cells Over Physiologic as well as Toxicologic Range

Jolyn Fernandes; Li Hao; Kaiser M. Bijli; Joshua D. Chandler; Michael Orr; Xin Hu; Dean P. Jones; Young-Mi Go

Manganese (Mn) is an abundant redox-active metal with well-characterized mitochondrial accumulation and neurotoxicity due to excessive exposures. Mn is also an essential co-factor for the mitochondrial antioxidant protein, superoxide dismutase-2 (SOD2), and the range for adequate intake established by the Institute of Medicine Food and Nutrition Board is 20% of the interim guidance value for toxicity by the Agency for Toxic Substances and Disease Registry, leaving little margin for safety. To study toxic mechanisms over this critical dose range, we treated human neuroblastoma SH-SY5Y cells with a series of MnCl2 concentrations (from 0 to 100 &mgr;M) and measured cellular content to compare to human brain Mn content. Concentrations ⩽10 &mgr;M gave cellular concentrations comparable to literature values for normal human brain, whereas concentrations ≥50 &mgr;M resulted in values comparable to brains from individuals with toxic Mn exposures. Cellular oxygen consumption rate increased as a function of Mn up to 10 &mgr;M and decreased with Mn dose ≥50 &mgr;M. Over this range, Mn had no effect on superoxide production as measured by aconitase activity or MitoSOX but increased H2O2 production as measured by MitoPY1. Consistent with increased production of H2O2, SOD2 activity, and steady-state oxidation of total thiol increased with increasing Mn. These findings have important implications for Mn toxicity by re-directing attention from superoxide anion radical to H2O2-dependent mechanisms and to investigation over the entire physiologic range to toxicologic range. Additionally, the results show that controlled Mn exposure provides a useful cell manipulation for toxicological studies of mitochondrial H2O2 signaling.


Metabolism-clinical and Experimental | 2017

Plasma metabolomics in adults with cystic fibrosis during a pulmonary exacerbation: A pilot randomized study of high-dose vitamin D 3 administration

Jessica A. Alvarez; Elizabeth Chong; Douglas I. Walker; Joshua D. Chandler; Ellen S. Michalski; Ruth E. Grossmann; Karan Uppal; Shuzhao Li; Jennifer K. Frediani; Rabindra Tirouvanziam; ViLinh Tran; Vin Tangpricha; Dean P. Jones; Thomas R. Ziegler

BACKGROUND Cystic fibrosis (CF) is a chronic catabolic disease often requiring hospitalization for acute episodes of worsening pulmonary exacerbations. Limited data suggest that vitamin D may have beneficial clinical effects, but the impact of vitamin D on systemic metabolism in this setting is unknown. OBJECTIVE We used high-resolution metabolomics (HRM) to assess the impact of baseline vitamin D status and high-dose vitamin D3 administration on systemic metabolism in adults with CF with an acute pulmonary exacerbation. DESIGN Twenty-five hospitalized adults with CF were enrolled in a randomized trial of high-dose vitamin D3 (250,000IU vitamin D3 bolus) versus placebo. Age-matched healthy subjects served as a reference group for baseline comparisons. Plasma was analyzed with liquid chromatography/ultra-high resolution mass spectrometry. Using recent HRM bioinformatics and metabolic pathway enrichment methods, we examined associations with baseline vitamin D status (sufficient vs. deficient per serum 25-hydroxyvitamin D concentrations) and the 7-day response to vitamin D3 supplementation. RESULTS Several amino acids and lipid metabolites differed between CF and healthy control subjects, indicative of an overall catabolic state. In CF subjects, 343 metabolites differed (P<0.05) by baseline vitamin D status and were enriched within 7 metabolic pathways including fatty acid, amino acid, and carbohydrate metabolism. A total of 316 metabolites, which showed enrichment for 15 metabolic pathways-predominantly representing amino acid pathways-differed between the vitamin D3- and placebo-treated CF subjects over time (P<0.05). In the placebo group, several tricarboxylic acid cycle intermediates increased while several amino acid-related metabolites decreased; in contrast, little change in these metabolites occurred with vitamin D3 treatment. CONCLUSIONS Numerous metabolic pathways detected by HRM varied in association with vitamin D status and high-dose vitamin D3 supplementation in adults with CF experiencing a pulmonary exacerbation. Overall, these pilot data suggest an anti-catabolic effect of high-dose vitamin D3 in this clinical setting.


Annals of the New York Academy of Sciences | 2017

Two common human CLDN5 alleles encode different open reading frames but produce one protein isoform

Ronald M. Cornely; Barbara Schlingmann; Whitney S. Shepherd; Joshua D. Chandler; David C. Neujahr; Michael Koval

Claudins provide tight junction barrier selectivity. The human CLDN5 gene contains a high‐frequency single‐nucleotide polymorphism (rs885985), where the G allele codes for glutamine (Q) and the A allele codes for an amber stop codon. Thus, these different CLDN5 alleles define nested open reading frames (ORFs) encoding claudin‐5 proteins that are 303 or 218 amino acids in length. Interestingly, human claudin‐16 and claudin‐23 also have long ORFs. The long form of claudin‐5 contrasts with the majority of claudin‐5 proteins in the National Center for Biotechnology Information protein database, which are less than 220 amino acids in length. Screening of genotyped human lung tissue by immunoblot revealed only the 218 amino acid form of claudin‐5 protein; the long‐form claudin‐5 protein was not detected. Moreover, when forcibly expressed in transfected cells, the long form of human claudin‐5 was retained in intracellular compartments and did not localize to the plasma membrane, in contrast to the 218 amino acid form, which localized to intercellular junctions. This suggests that the 303 amino acid claudin‐5 protein is rarely expressed, and, if so, is predicted to adversely affect cell function. Potential roles for upstream ORFs in regulating claudin‐5 expression are also discussed.

Collaboration


Dive into the Joshua D. Chandler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge