Joshua L. Lillvis
Georgia State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joshua L. Lillvis.
Proceedings of the National Academy of Sciences of the United States of America | 2012
James M. Newcomb; Akira Sakurai; Joshua L. Lillvis; Charuni A. Gunaratne; Paul S. Katz
How neural circuit evolution relates to behavioral evolution is not well understood. Here the relationship between neural circuits and behavior is explored with respect to the swimming behaviors of the Nudipleura (Mollusca, Gastropoda, Opithobranchia). Nudipleura is a diverse monophyletic clade of sea slugs among which only a small percentage of species can swim. Swimming falls into a limited number of categories, the most prevalent of which are rhythmic left–right body flexions (LR) and rhythmic dorsal–ventral body flexions (DV). The phylogenetic distribution of these behaviors suggests a high degree of homoplasy. The central pattern generator (CPG) underlying DV swimming has been well characterized in Tritonia diomedea and in Pleurobranchaea californica. The CPG for LR swimming has been elucidated in Melibe leonina and Dendronotus iris, which are more closely related. The CPGs for the categorically distinct DV and LR swimming behaviors consist of nonoverlapping sets of homologous identified neurons, whereas the categorically similar behaviors share some homologous identified neurons, although the exact composition of neurons and synapses in the neural circuits differ. The roles played by homologous identified neurons in categorically distinct behaviors differ. However, homologous identified neurons also play different roles even in the swim CPGs of the two LR swimming species. Individual neurons can be multifunctional within a species. Some of those functions are shared across species, whereas others are not. The pattern of use and reuse of homologous neurons in various forms of swimming and other behaviors further demonstrates that the composition of neural circuits influences the evolution of behaviors.
Current Biology | 2011
Akira Sakurai; James M. Newcomb; Joshua L. Lillvis; Paul S. Katz
It is often assumed that similar behaviors in related species are produced by similar neural mechanisms. To test this, we examined the neuronal basis of a simple swimming behavior in two nudibranchs (Mollusca, Opisthobranchia), Melibe leonina and Dendronotus iris. The side-to-side swimming movements of Dendronotus [1] strongly resemble those of Melibe [2, 3]. In Melibe, it was previously shown that the central pattern generator (CPG) for swimming is composed of two bilaterally symmetric pairs of identified interneurons, swim interneuron 1 (Si1) and swim interneuron 2 (Si2), which are electrically coupled ipsilaterally and mutually inhibit both contralateral counterparts [2, 4]. We identified homologs of Si1 and Si2 in Dendronotus. (Henceforth, homologous neurons in each species will be distinguished by the subscripts (Den) and (Mel).) We found that Si2(Den) and Si2(Mel) play similar roles in generating the swim motor pattern. However, unlike Si1(Mel), Si1(Den) was not part of the swim CPG, was not strongly coupled to the ipsilateral Si2(Den), and did not inhibit the contralateral neurons. Thus, species differences exist in the neuronal organization of the swim CPGs despite the similarity of the behaviors. Therefore, similarity in species-typical behavior is not necessarily predictive of common neural mechanisms, even for homologous neurons in closely related species.
The Journal of Neuroscience | 2013
Joshua L. Lillvis; Paul S. Katz
Neuromodulation can dynamically alter neuronal and synaptic properties, thereby changing the behavioral output of a neural circuit. It is therefore conceivable that natural selection might act upon neuromodulation as a mechanism for sculpting the behavioral repertoire of a species. Here we report that the presence of neuromodulation is correlated with the production of a behavior that most likely evolved independently in two species: Tritonia diomedea and Pleurobranchaea californica (Mollusca, Gastropoda, Opisthobranchia, Nudipleura). Individuals of both species exhibit escape swimming behaviors consisting of repeated dorsal-ventral whole-body flexions. The central pattern generator (CPG) circuits underlying these behaviors contain homologous identified neurons: DSI and C2 in Tritonia and As and A1 in Pleurobranchaea. Homologs of these neurons also can be found in Hermissenda crassicornis where they are named CPT and C2, respectively. However, members of this species do not exhibit an analogous swimming behavior. In Tritonia and Pleurobranchaea, but not in Hermissenda, the serotonergic DSI homologs modulated the strength of synapses made by C2 homologs. Furthermore, the serotonin receptor antagonist methysergide blocked this neuromodulation and the swimming behavior. Additionally, in Pleurobranchaea, the robustness of swimming correlated with the extent of the synaptic modulation. Finally, injection of serotonin induced the swimming behavior in Tritonia and Pleurobranchaea, but not in Hermissenda. This suggests that the analogous swimming behaviors of Tritonia and Pleurobranchaea share a common dependence on serotonergic neuromodulation. Thus, neuromodulation may provide a mechanism that enables species to acquire analogous behaviors independently using homologous neural circuit components.
Current Opinion in Neurobiology | 2014
Paul S. Katz; Joshua L. Lillvis
The evolution of behavior seems inconsistent with the deep homology of neuromodulatory signaling. G protein coupled receptors (GPCRs) evolved slowly from a common ancestor through a process involving gene duplication, neofunctionalization, and loss. Neuropeptides co-evolved with their receptors and exhibit many conserved functions. Furthermore, brain areas are highly conserved with suggestions of deep anatomical homology between arthropods and vertebrates. Yet, behavior evolved more rapidly; even members of the same genus or species can differ in heritable behavior. The solution to the paradox involves changes in the compartmentalization, or subfunctionalization, of neuromodulation; neurons shift their expression of GPCRs and the content of monoamines and neuropeptides. Furthermore, parallel evolution of neuromodulatory signaling systems suggests a route for repeated evolution of similar behaviors.
PLOS ONE | 2012
Joshua L. Lillvis; Charuni A. Gunaratne; Paul S. Katz
Certain invertebrate neurons can be identified by their behavioral functions. However, evolutionary divergence can cause some species to not display particular behaviors, thereby making it impossible to use physiological characteristics related to those behaviors for identifying homologous neurons across species. Therefore, to understand the neural basis of species-specific behavior, it is necessary to identify homologues using characteristics that are independent of physiology. In the Nudipleura mollusc Tritonia diomedea, Cerebral Neuron 2 (C2) was first described as being a member of the swim central pattern generator (CPG). Here we demonstrate that neurochemical markers, in conjunction with previously known neuroanatomical characteristics, allow C2 to be uniquely identified without the aid of electrophysiological measures. Specifically, C2 had three characteristics that, taken together, identified the neuron: 1) a white cell on the dorsal surface of the cerebral ganglion, 2) an axon that projected to the contralateral pedal ganglion and through the pedal commissure, and 3) immunoreactivity for the peptides FMRFamide and Small Cardioactive Peptide B. These same anatomical and neurochemical characteristics also uniquely identified the C2 homologue in Pleurobranchaea californica (called A1), which was previously identified by its analogous role in the Pleurobranchaea swim CPG. Furthermore, these characteristics were used to identify C2 homologues in Melibe leonina, Hermissenda crassicornis, and Flabellina iodinea, species that are phylogenetically closer to Tritonia than Pleurobranchaea, but do not display the same swimming behavior as Tritonia or Pleurobranchaea. These identifications will allow future studies comparing and contrasting the physiological properties of C2 across species that can and cannot produce the type of swimming behavior exhibited by Tritonia.
PLOS ONE | 2012
Geraldine A. Wright; Joshua L. Lillvis; Helen J. Bray; Julie A. Mustard
Physiological state profoundly influences the expression of the behaviour of individuals and can affect social interactions between animals. How physiological state influences food sharing and social behaviour in social insects is poorly understood. Here, we examined the social interactions and food sharing behaviour of honeybees with the aim of developing the honeybee as a model for understanding how an individuals state influences its social interactions. The state of individual honeybees was manipulated by either starving donor bees or feeding them sucrose or low doses of ethanol to examine how a change in hunger or inebriation state affected the social behaviours exhibited by two closely-related nestmates. Using a lab-based assay for measuring individual motor behaviour and social behaviour, we found that behaviours such as antennation, willingness to engage in trophallaxis, and mandible opening were affected by both hunger and ethanol intoxication. Inebriated bees were more likely to exhibit mandible opening, which may represent a form of aggression, than bees fed sucrose alone. However, intoxicated bees were as willing to engage in trophallaxis as the sucrose-fed bees. The effects of ethanol on social behaviors were dose-dependent, with higher doses of ethanol producing larger effects on behaviour. Hungry donor bees, on the other hand, were more likely to engage in begging for food and less likely to antennate and to display mandible opening. We also found that when nestmates received food from donors previously fed ethanol, they began to display evidence of inebriation, indicating that ethanol can be retained in the crop for several hours and that it can be transferred between honeybee nestmates during trophallaxis.
bioRxiv | 2017
Yun Ding; Joshua L. Lillvis; Jessica Cande; Gordon Berman; Benjamin J Arthur; Min Xu; Barry J. Dickson; David L. Stern
The neural basis for behavioural evolution is poorly understood. Functional comparisons of homologous neurons may reveal how neural circuitry contributes to behavioural evolution, but homologous neurons cannot be identified and manipulated in most taxa. Here, we compare the function of homologous courtship song neurons by exporting neurogenetic reagents that label identified neurons in Drosophila melanogaster to D. yakuba. We found a conserved role for a cluster of brain neurons that establish a persistent courtship state. In contrast, a descending neuron with conserved electrophysiological properties drives different song types in each species. Our results suggest that song evolved, in part, due to changes in the neural circuitry downstream of this descending neuron. This experimental approach can be generalized to other neural circuits and therefore provides an experimental framework for studying how the nervous system has evolved to generate behavioural diversity.
Archive | 2015
Paul S. Katz; Allen I. Selverston; Joshua L. Lillvis
Archive | 2015
David Reiss; Paul S. Katz; Joshua L. Lillvis; Anthony Walsh; Ilhong Yun
Archive | 2015
John Koester; Jian Jing; Klaudiusz R. Weiss; Stéphane Marinesco; Nimalee Wickremasinghe; Thomas J. Carew; Ferdinand S. Vilim; Elizabeth C. Cropper; James M. Newcomb; Akira Sakurai; Joshua L. Lillvis; Charuni A. Gunaratne; Paul S. Katz