Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua M. Galanter is active.

Publication


Featured researches published by Joshua M. Galanter.


American Journal of Respiratory and Critical Care Medicine | 2008

ORMDL3 gene is associated with asthma in three ethnically diverse populations.

Joshua M. Galanter; Shweta Choudhry; Celeste Eng; Sylvette Nazario; Jose R. Rodriguez-Santana; Jesus Casal; Alfonso Torres-Palacios; Jorge Salas; Rocio Chapela; H. Geoffrey Watson; Kelley Meade; Michael LeNoir; William Rodríguez-Cintrón; Pedro C. Avila; Esteban G. Burchard

RATIONALE Independent replication of genetic associations in complex diseases, particularly in whole-genome association studies, is critical to confirm the association. OBJECTIVES A whole-genome association study identified ORMDL3 as a promising candidate gene for asthma in white populations. Here, we attempted to confirm the role of ORMDL3 genetic variants in asthma in three ethnically diverse populations: Mexican, Puerto Rican, and African American. METHODS We used family-based analyses to test for association between seven candidate single-nucleotide polymorphisms (SNPs) in and around the ORMDL3 gene and asthma and related phenotypes in 701 Puerto Rican and Mexican parent-child trios. We also evaluated these seven SNPs and an additional ORMDL3 SNP in 264 African American subjects with asthma and 176 healthy control subjects. MEASUREMENTS AND MAIN RESULTS We found significant associations between two SNPs within ORMDL3 (rs4378650 and rs12603332) and asthma in Mexicans and African Americans (P = 0.028 and 0.001 for rs4378650 and P = 0.021 and 0.001 for rs12603332, respectively), and a trend toward association in Puerto Ricans (P = 0.076 and 0.080 for SNPs rs4378650 and rs12603332, respectively). These associations became stronger among Mexican and Puerto Rican subjects with asthma with IgE levels greater than 100 IU/ml. We did not find any association between ORMDL3 SNPs and baseline lung function or response to the bronchodilator albuterol. CONCLUSIONS Our results confirm that the ORMDL3 locus is a risk factor for asthma in ethnically diverse populations. However, inconsistent SNP-level results suggest that further studies will be needed to determine the mechanism by which ORMDL3 predisposes to asthma.


Science | 2014

The genetics of Mexico recapitulates Native American substructure and affects biomedical traits

Andres Moreno-Estrada; Christopher R. Gignoux; Juan Carlos Fernández-López; Fouad Zakharia; Martin Sikora; Alejandra V. Contreras; Victor Acuña-Alonzo; Karla Sandoval; Celeste Eng; Sandra Romero-Hidalgo; Patricia Ortiz-Tello; Victoria Robles; Eimear E. Kenny; Ismael Nuño-Arana; Rodrigo Barquera-Lozano; Gastón Macín-Pérez; Julio Granados-Arriola; Scott Huntsman; Joshua M. Galanter; Marc Via; Jean G. Ford; Rocio Chapela; William Rodriguez-Cintron; Jose R. Rodriguez-Santana; Isabelle Romieu; Juan José Luis Sienra-Monge; Blanca Estela del Río Navarro; Stephanie J. London; Andres Ruiz-Linares; Rodrigo García-Herrera

The population structure of Native Mexicans The genetics of indigenous Mexicans exhibit substantial geographical structure, some as divergent from each other as are existing populations of Europeans and Asians. By performing genome-wide analyses on Native Mexicans from differing populations, Moreno-Estrada et al. successfully recapitulated the pre-Columbian substructure of Mexico. This ancestral structure is evident among cosmopolitan Mexicans and is correlated with subcontinental origins and medically relevant aspects of lung function. These findings exemplify the importance of understanding the genetic contributions of admixed individuals. Science, this issue p. 1280 Indigenous and cosmopolitan Mexican populations are highly structured with genetic variation of medical relevance. Mexico harbors great cultural and ethnic diversity, yet fine-scale patterns of human genome-wide variation from this region remain largely uncharacterized. We studied genomic variation within Mexico from over 1000 individuals representing 20 indigenous and 11 mestizo populations. We found striking genetic stratification among indigenous populations within Mexico at varying degrees of geographic isolation. Some groups were as differentiated as Europeans are from East Asians. Pre-Columbian genetic substructure is recapitulated in the indigenous ancestry of admixed mestizo individuals across the country. Furthermore, two independently phenotyped cohorts of Mexicans and Mexican Americans showed a significant association between subcontinental ancestry and lung function. Thus, accounting for fine-scale ancestry patterns is critical for medical and population genetic studies within Mexico, in Mexican-descent populations, and likely in many other populations worldwide.


The New England Journal of Medicine | 2010

Genetic ancestry in lung-function predictions

Rajesh Kumar; Max A. Seibold; Melinda C. Aldrich; L. Keoki Williams; Alex P. Reiner; Laura A. Colangelo; Joshua M. Galanter; Christopher R. Gignoux; Donglei Hu; Saunak Sen; Shweta Choudhry; Edward L. Peterson; Jose R. Rodriguez-Santana; William Rodriguez-Cintron; Michael A. Nalls; Tennille S. Leak; Ellen S. O'Meara; Bernd Meibohm; Stephen B. Kritchevsky; Rongling Li; Tamara B. Harris; Deborah A. Nickerson; Myriam Fornage; Paul L. Enright; Elad Ziv; Lewis J. Smith; Kiang Liu; Esteban G. Burchard

BACKGROUND Self-identified race or ethnic group is used to determine normal reference standards in the prediction of pulmonary function. We conducted a study to determine whether the genetically determined percentage of African ancestry is associated with lung function and whether its use could improve predictions of lung function among persons who identified themselves as African American. METHODS We assessed the ancestry of 777 participants self-identified as African American in the Coronary Artery Risk Development in Young Adults (CARDIA) study and evaluated the relation between pulmonary function and ancestry by means of linear regression. We performed similar analyses of data for two independent cohorts of subjects identifying themselves as African American: 813 participants in the Health, Aging, and Body Composition (HABC) study and 579 participants in the Cardiovascular Health Study (CHS). We compared the fit of two types of models to lung-function measurements: models based on the covariates used in standard prediction equations and models incorporating ancestry. We also evaluated the effect of the ancestry-based models on the classification of disease severity in two asthma-study populations. RESULTS African ancestry was inversely related to forced expiratory volume in 1 second (FEV(1)) and forced vital capacity in the CARDIA cohort. These relations were also seen in the HABC and CHS cohorts. In predicting lung function, the ancestry-based model fit the data better than standard models. Ancestry-based models resulted in the reclassification of asthma severity (based on the percentage of the predicted FEV(1)) in 4 to 5% of participants. CONCLUSIONS Current predictive equations, which rely on self-identified race alone, may misestimate lung function among subjects who identify themselves as African American. Incorporating ancestry into normative equations may improve lung-function estimates and more accurately categorize disease severity. (Funded by the National Institutes of Health and others.)


PLOS Genetics | 2012

Development of a panel of genome-wide ancestry informative markers to study admixture throughout the americas

Joshua M. Galanter; Juan Carlos Fernández-López; Christopher R. Gignoux; Jill S. Barnholtz-Sloan; Ceres Fernandez-Rozadilla; Marc Via; Alfredo Hidalgo-Miranda; Alejandra V. Contreras; Laura Uribe Figueroa; Paola Raska; Gerardo Jimenez-Sanchez; Irma Silva Zolezzi; M.D. Torres; Clara Ruiz–Ponte; Y. Ruiz; Antonio Salas; Elizabeth A. Nguyen; Celeste Eng; Lisbeth Borjas; William Zabala; Guillermo Barreto; Fernando Rondóo González; A. Ibarra; Patricia Taboada; L. Porras; Fabián Moreno; Abigail W. Bigham; Gerardo Gutiérrez; Tom D. Brutsaert; Fabiola León-Velarde

Most individuals throughout the Americas are admixed descendants of Native American, European, and African ancestors. Complex historical factors have resulted in varying proportions of ancestral contributions between individuals within and among ethnic groups. We developed a panel of 446 ancestry informative markers (AIMs) optimized to estimate ancestral proportions in individuals and populations throughout Latin America. We used genome-wide data from 953 individuals from diverse African, European, and Native American populations to select AIMs optimized for each of the three main continental populations that form the basis of modern Latin American populations. We selected markers on the basis of locus-specific branch length to be informative, well distributed throughout the genome, capable of being genotyped on widely available commercial platforms, and applicable throughout the Americas by minimizing within-continent heterogeneity. We then validated the panel in samples from four admixed populations by comparing ancestry estimates based on the AIMs panel to estimates based on genome-wide association study (GWAS) data. The panel provided balanced discriminatory power among the three ancestral populations and accurate estimates of individual ancestry proportions (R2>0.9 for ancestral components with significant between-subject variance). Finally, we genotyped samples from 18 populations from Latin America using the AIMs panel and estimated variability in ancestry within and between these populations. This panel and its reference genotype information will be useful resources to explore population history of admixture in Latin America and to correct for the potential effects of population stratification in admixed samples in the region.


American Journal of Respiratory and Critical Care Medicine | 2013

Early-Life Air Pollution and Asthma Risk in Minority Children. The GALA II and SAGE II Studies

Katherine K. Nishimura; Joshua M. Galanter; Lindsey A. Roth; Sam S. Oh; Neeta Thakur; Elizabeth A. Nguyen; Shannon Thyne; Harold J. Farber; Denise Serebrisky; Rajesh Kumar; Emerita Brigino-Buenaventura; Adam Davis; Michael LeNoir; Kelley Meade; William Rodriguez-Cintron; Pedro C. Avila; Luisa N. Borrell; Kirsten Bibbins-Domingo; Jose R. Rodriguez-Santana; Śaunak Sen; Fred Lurmann; John R. Balmes; Esteban G. Burchard

RATIONALE Air pollution is a known asthma trigger and has been associated with short-term asthma symptoms, airway inflammation, decreased lung function, and reduced response to asthma rescue medications. OBJECTIVES To assess a causal relationship between air pollution and childhood asthma using data that address temporality by estimating air pollution exposures before the development of asthma and to establish the generalizability of the association by studying diverse racial/ethnic populations in different geographic regions. METHODS This study included Latino (n = 3,343) and African American (n = 977) participants with and without asthma from five urban regions in the mainland United States and Puerto Rico. Residential history and data from local ambient air monitoring stations were used to estimate average annual exposure to five air pollutants: ozone, nitrogen dioxide (NO₂), sulfur dioxide, particulate matter not greater than 10 μm in diameter, and particulate matter not greater than 2.5 μm in diameter. Within each region, we performed logistic regression to determine the relationship between early-life exposure to air pollutants and subsequent asthma diagnosis. A random-effects model was used to combine the region-specific effects and generate summary odds ratios for each pollutant. MEASUREMENTS AND MAIN RESULTS After adjustment for confounders, a 5-ppb increase in average NO₂ during the first year of life was associated with an odds ratio of 1.17 for physician-diagnosed asthma (95% confidence interval, 1.04-1.31). CONCLUSIONS Early-life NO₂ exposure is associated with childhood asthma in Latinos and African Americans. These results add to a growing body of evidence that traffic-related pollutants may be causally related to childhood asthma.


PLOS Medicine | 2015

Diversity in Clinical and Biomedical Research: A Promise Yet to Be Fulfilled

Sam S. Oh; Joshua M. Galanter; Neeta Thakur; Maria Pino-Yanes; Nicolas E. Barcelo; Marquitta J. White; Danielle M. de Bruin; Ruth M. Greenblatt; Kirsten Bibbins-Domingo; Alan H.B. Wu; Luisa N. Borrell; Chris Gunter; Neil R. Powe; Esteban G. Burchard

Esteban Gonzalez Burchard and colleagues explore how making medical research more diverse would aid not only social justice but scientific quality and clinical effectiveness, too.


The Journal of Allergy and Clinical Immunology | 2014

Dissecting childhood asthma with nasal transcriptomics distinguishes subphenotypes of disease

Alex Poole; Cydney Urbanek; Celeste Eng; Jeoffrey Schageman; Sean Jacobson; Brian P. O'Connor; Joshua M. Galanter; Christopher R. Gignoux; Lindsey A. Roth; Rajesh Kumar; Sharon M. Lutz; Andrew H. Liu; Tasha E. Fingerlin; Robert A. Setterquist; Esteban G. Burchard; Jose R. Rodriguez-Santana; Max A. Seibold

BACKGROUND Bronchial airway expression profiling has identified inflammatory subphenotypes of asthma, but the invasiveness of this technique has limited its application to childhood asthma. OBJECTIVES We sought to determine whether the nasal transcriptome can proxy expression changes in the lung airway transcriptome in asthmatic patients. We also sought to determine whether the nasal transcriptome can distinguish subphenotypes of asthma. METHODS Whole-transcriptome RNA sequencing was performed on nasal airway brushings from 10 control subjects and 10 asthmatic subjects, which were compared with established bronchial and small-airway transcriptomes. Targeted RNA sequencing nasal expression analysis was used to profile 105 genes in 50 asthmatic subjects and 50 control subjects for differential expression and clustering analyses. RESULTS We found 90.2% overlap in expressed genes and strong correlation in gene expression (ρ = .87) between the nasal and bronchial transcriptomes. Previously observed asthmatic bronchial differential expression was strongly correlated with asthmatic nasal differential expression (ρ = 0.77, P = 5.6 × 10(-9)). Clustering analysis identified TH2-high and TH2-low subjects differentiated by expression of 70 genes, including IL13, IL5, periostin (POSTN), calcium-activated chloride channel regulator 1 (CLCA1), and serpin peptidase inhibitor, clade B (SERPINB2). TH2-high subjects were more likely to have atopy (odds ratio, 10.3; P = 3.5 × 10(-6)), atopic asthma (odds ratio, 32.6; P = 6.9 × 10(-7)), high blood eosinophil counts (odds ratio, 9.1; P = 2.6 × 10(-6)), and rhinitis (odds ratio, 8.3; P = 4.1 × 10(-6)) compared with TH2-low subjects. Nasal IL13 expression levels were 3.9-fold higher in asthmatic participants who experienced an asthma exacerbation in the past year (P = .01). Several differentially expressed nasal genes were specific to asthma and independent of atopic status. CONCLUSION Nasal airway gene expression profiles largely recapitulate expression profiles in the lung airways. Nasal expression profiling can be used to identify subjects with IL13-driven asthma and a TH2-skewed systemic immune response.


PLOS ONE | 2011

History shaped the geographic distribution of genomic admixture on the island of Puerto Rico.

Marc Via; Christopher R. Gignoux; Lindsey A. Roth; Laura Fejerman; Joshua M. Galanter; Shweta Choudhry; Gladys Toro-Labrador; Jorge Viera-Vera; Taras K. Oleksyk; Kenneth B. Beckman; Elad Ziv; Neil Risch; Esteban G. Burchard; Juan Carlos Martínez-Cruzado

Contemporary genetic variation among Latin Americans human groups reflects population migrations shaped by complex historical, social and economic factors. Consequently, admixture patterns may vary by geographic regions ranging from countries to neighborhoods. We examined the geographic variation of admixture across the island of Puerto Rico and the degree to which it could be explained by historic and social events. We analyzed a census-based sample of 642 Puerto Rican individuals that were genotyped for 93 ancestry informative markers (AIMs) to estimate African, European and Native American ancestry. Socioeconomic status (SES) data and geographic location were obtained for each individual. There was significant geographic variation of ancestry across the island. In particular, African ancestry demonstrated a decreasing East to West gradient that was partially explained by historical factors linked to the colonial sugar plantation system. SES also demonstrated a parallel decreasing cline from East to West. However, at a local level, SES and African ancestry were negatively correlated. European ancestry was strongly negatively correlated with African ancestry and therefore showed patterns complementary to African ancestry. By contrast, Native American ancestry showed little variation across the island and across individuals and appears to have played little social role historically. The observed geographic distributions of SES and genetic variation relate to historical social events and mating patterns, and have substantial implications for the design of studies in the recently admixed Puerto Rican population. More generally, our results demonstrate the importance of incorporating social and geographic data with genetics when studying contemporary admixed populations.


Nature Methods | 2016

Sparse PCA corrects for cell type heterogeneity in epigenome-wide association studies

Elior Rahmani; Noah Zaitlen; Yael Baran; Celeste Eng; Donglei Hu; Joshua M. Galanter; Sam S. Oh; Esteban G. Burchard; Eleazar Eskin; James Zou; Eran Halperin

In epigenome-wide association studies (EWAS), different methylation profiles of distinct cell types may lead to false discoveries. We introduce ReFACTor, a method based on principal component analysis (PCA) and designed for the correction of cell type heterogeneity in EWAS. ReFACTor does not require knowledge of cell counts, and it provides improved estimates of cell type composition, resulting in improved power and control for false positives in EWAS. Corresponding software is available at http://www.cs.tau.ac.il/~heran/cozygene/software/refactor.html.


The Journal of Allergy and Clinical Immunology | 2015

Genetic ancestry influences asthma susceptibility and lung function among Latinos.

Maria Pino-Yanes; Neeta Thakur; Christopher R. Gignoux; Joshua M. Galanter; Lindsey A. Roth; Celeste Eng; Katherine K. Nishimura; Sam S. Oh; Hita Vora; Scott Huntsman; Elizabeth A. Nguyen; Donglei Hu; Katherine A. Drake; David V. Conti; Andres Moreno-Estrada; Karla Sandoval; Cheryl A. Winkler; Luisa N. Borrell; Fred Lurmann; Talat Islam; Adam Davis; Harold J. Farber; Kelley Meade; Pedro C. Avila; Denise Serebrisky; Kirsten Bibbins-Domingo; Michael LeNoir; Jean G. Ford; Emerita Brigino-Buenaventura; William Rodriguez-Cintron

BACKGROUND Childhood asthma prevalence and morbidity varies among Latinos in the United States, with Puerto Ricans having the highest and Mexicans the lowest. OBJECTIVE To determine whether genetic ancestry is associated with the odds of asthma among Latinos, and secondarily whether genetic ancestry is associated with lung function among Latino children. METHODS We analyzed 5493 Latinos with and without asthma from 3 independent studies. For each participant, we estimated the proportion of African, European, and Native American ancestry using genome-wide data. We tested whether genetic ancestry was associated with the presence of asthma and lung function among subjects with and without asthma. Odds ratios (OR) and effect sizes were assessed for every 20% increase in each ancestry. RESULTS Native American ancestry was associated with lower odds of asthma (OR = 0.72, 95% CI: 0.66-0.78, P = 8.0 × 10(-15)), while African ancestry was associated with higher odds of asthma (OR = 1.40, 95% CI: 1.14-1.72, P = .001). These associations were robust to adjustment for covariates related to early life exposures, air pollution, and socioeconomic status. Among children with asthma, African ancestry was associated with lower lung function, including both pre- and post-bronchodilator measures of FEV1 (-77 ± 19 mL; P = 5.8 × 10(-5) and -83 ± 19 mL; P = 1.1 x 10(-5), respectively) and forced vital capacity (-100 ± 21 mL; P = 2.7 × 10(-6) and -107 ± 22 mL; P = 1.0 x 10(-6), respectively). CONCLUSION Differences in the proportions of genetic ancestry can partially explain disparities in asthma susceptibility and lung function among Latinos.

Collaboration


Dive into the Joshua M. Galanter's collaboration.

Top Co-Authors

Avatar

Celeste Eng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sam S. Oh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harold J. Farber

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Luisa N. Borrell

City University of New York

View shared research outputs
Researchain Logo
Decentralizing Knowledge