Joshua M. Lader
New York University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joshua M. Lader.
Circulation Research | 2011
Benjamin F. Remo; Jiaxiang Qu; Frank M. Volpicelli; Steven Giovannone; Daniel Shin; Joshua M. Lader; Fangyu Liu; Jie Zhang; Danielle S. Lent; Gregory E. Morley; Glenn I. Fishman
Rationale: Posttranslational phosphorylation of connexin43 (Cx43) has been proposed as a key regulatory event in normal cardiac gap junction expression and pathological gap junction remodeling. Nonetheless, the role of Cx43 phosphorylation in the context of the intact organism is poorly understood. Objective: To establish whether specific Cx43 phosphorylation events influence gap junction expression and pathological remodeling. Methods and Results: We generated Cx43 germline knock-in mice in which serines 325/328/330 were replaced with phosphomimetic glutamic acids (S3E) or nonphosphorylatable alanines (S3A). The S3E mice were resistant to acute and chronic pathological gap junction remodeling and displayed diminished susceptibility to the induction of ventricular arrhythmias. Conversely, the S3A mice showed deleterious effects on cardiac gap junction formation and function, developed electric remodeling, and were highly susceptible to inducible arrhythmias. Conclusions: These data demonstrate a mechanistic link between posttranslational phosphorylation of Cx43 and gap junction formation, remodeling, and arrhythmic susceptibility.
The FASEB Journal | 2008
Stephan B. Danik; Gregg Rosner; Joshua M. Lader; David E. Gutstein; Glenn I. Fishman; Gregory E. Morley
Loss of connexin43 (Cx43) gap junction channels in the heart results in a marked increase in the incidence of spontaneous and inducible polymorphic ventricular tachyarrhythmias (PVTs). The mechanisms resulting in this phenotype remain unclear. We hypothesized that uncoupling promotes regional ion channel remodeling, thereby increasing electrical heterogeneity and facilitating the development of PVT. In isolated‐perfused control hearts, programmed electrical stimulation elicited infrequent monomorphic ventricular tachyarrhythmias (MVT), and dominant frequencies (DFs) during MVT were similar in the right ventricle (RV) and left ventricle (LV). Moreover, conduction properties, action potential durations (APDs), and re‐polarizing current densities were similar in RV and LV myocytes. In contrast, PVT was common in Cx43 conditional knockout (OCKO) hearts, and arrhythmias were characterized by significantly higher DFs in the RV compared to the LV. APDs in OCKO myocytes were significantly shorter than those from chamber‐matched controls, with RV OCKO myocytes being most affected. APD shortening was associated with higher levels of sustained current in myocytes from both chambers as well as higher levels of the inward rectifier current only in RV myocytes. Thus, alterations in cell‐cell coupling lead to regional changes in potassium current expression, which in this case facilitates the development of reentrant arrhythmias. We propose a new mechanistic link between electrical uncoupling and ion channel remodeling. These findings may be relevant not only in cardiac tissue but also to other organ systems where gap junction remodeling is known to occur. Danik, S. B., Rosner, G., Lader, J., Gutstein, D. E., Fishman, G. I., Morley, G. E. Electrical remodeling contributes to complex tachyarrhythmias in connexin43‐deficient mouse hearts. FASEB J. 22, 1204–1212 (2008)
Circulation Research | 2008
David E. Leaf; Jonathan E. Feig; Carolina Vasquez; Pamela L. Riva; Cindy Yu; Joshua M. Lader; Andrianos Kontogeorgis; Elvera L. Baron; Nicholas S. Peters; Edward A. Fisher; David E. Gutstein; Gregory E. Morley
Impulse propagation in cardiac tissue is a complex process in which intercellular coupling through gap junction channels is a critical component. Connexin40 (Cx40) is an abundant gap junction protein that is expressed in atrial myocytes. Alterations in the expression of Cx40 have been implicated in atrial arrhythmogenesis. The purpose of the current study was to assess the role of Cx40 in atrial impulse propagation. High-resolution optical mapping was used to study conduction in the right and left atrial appendages of isolated Langendorff-perfused murine hearts. Wild-type (Cx40+/+), heterozygous (Cx40+/−), and knockout (Cx40−/−) mice, both adult and embryonic, were studied to assess the effects of reduced Cx40 expression on sinus node function and conduction velocity at different pacing cycle lengths (100 and 60 ms). In both adult and late-stage embryonic Cx40+/+ mice, heterogeneity in CV was found between the right and left atrial appendages. Either partial (Cx40+/−) or complete (Cx40−/−) deletion of Cx40 was associated with the loss of conduction heterogeneity in both adult and embryonic mice. Additionally, sinus node impulse initiation was found to be ectopic in Cx40−/− mice at 15.5 days postcoitus, whereas Cx40+/+ mice showed normal activation occurring near the crista terminalis. Our findings suggest that Cx40 plays an essential role in establishing interatrial conduction velocity heterogeneity in the murine model. Additionally, we describe for the first time a developmental requirement for Cx40 in normal sinus node impulse initiation at 15.5 days postcoitus.
Circulation-arrhythmia and Electrophysiology | 2011
Li Bao; Eirini Kefaloyianni; Joshua M. Lader; Miyoun Hong; Gregory E. Morley; Glenn I. Fishman; Eric A. Sobie; William A. Coetzee
Background— The specialized cardiac conduction system (CCS) expresses a unique complement of ion channels that confer a specific electrophysiological profile. ATP-sensitive potassium (KATP) channels in these myocytes have not been systemically investigated. Methods and Results— We recorded KATP channels in isolated CCS myocytes using Cntn2-EGFP reporter mice. The CCS KATP channels were less sensitive to inhibitory cytosolic ATP compared with ventricular channels and more strongly activated by MgADP. They also had a smaller slope conductance. The 2 types of channels had similar intraburst open and closed times, but the CCS KATP channel had a prolonged interburst closed time. CCS KATP channels were strongly activated by diazoxide and less by levcromakalim, whereas the ventricular KATP channel had a reverse pharmacological profile. CCS myocytes express elevated levels of Kir6.1 but reduced Kir6.2 and SUR2A mRNA compared with ventricular myocytes (SUR1 expression was negligible). SUR2B mRNA expression was higher in CCS myocytes relative to SUR2A. Canine Purkinje fibers expressed higher levels of Kir6.1 and SUR2B protein relative to the ventricle. Numeric simulation predicts a high sensitivity of the Purkinje action potential to changes in ATP:ADP ratio. Cardiac conduction time was prolonged by low-flow ischemia in isolated, perfused mouse hearts, which was prevented by glibenclamide. Conclusions— These data imply a differential electrophysiological response (and possible contribution to arrhythmias) of the ventricular CCS to KATP channel opening during periods of ischemia.
Heart Rhythm | 2012
Scott Bernstein; Brian Wong; Carolina Vasquez; Stuart Rosenberg; Ryan Rooke; Laura M. Kuznekoff; Joshua M. Lader; Vanessa M. Mahoney; Tatyana Budylin; Marie Älvstrand; Tammy Rakowski-Anderson; Rupinder Bharmi; Riddhi Shah; Steven J. Fowler; Douglas S. Holmes; Taraneh Ghaffari Farazi; Larry Chinitz; Gregory E. Morley
BACKGROUND Spinal cord stimulation (SCS) has been shown to modulate atrial electrophysiology and confer protection against ischemia and ventricular arrhythmias in animal models. OBJECTIVE To determine whether SCS reduces the susceptibility to atrial fibrillation (AF) induced by tachypacing (TP). METHODS In 21 canines, upper thoracic SCS systems and custom cardiac pacing systems were implanted. Right atrial and left atrial effective refractory periods were measured at baseline and after 15 minutes of SCS. Following recovery in a subset of canines, pacemakers were turned on to induce AF by alternately delivering TP and searching for AF. Canines were randomized to no SCS therapy (CTL) or intermittent SCS therapy on the initiation of TP (EARLY) or after 8 weeks of TP (LATE). AF burden (percent AF relative to total sense time) and AF inducibility (percentage of TP periods resulting in AF) were monitored weekly. After 15 weeks, echocardiography and histology were performed. RESULTS Effective refractory periods increased by 21 ± 14 ms (P = .001) in the left atrium and 29 ± 12 ms (P = .002) in the right atrium after acute SCS. AF burden was reduced for 11 weeks in EARLY compared with CTL (P <.05) animals. AF inducibility remained lower by week 15 in EARLY compared with CTL animals (32% ± 10% vs 91% ± 6%; P <.05). AF burden and inducibility were not significantly different between LATE and CTL animals. There were no structural differences among any groups. CONCLUSIONS SCS prolonged atrial effective refractory periods and reduced AF burden and inducibility in a canine AF model induced by TP. These data suggest that SCS may represent a treatment option for AF.
Circulation | 2011
John P. Morrow; Alexander Katchman; Ni-Huiping Son; Chad M. Trent; Raffay Khan; Takayuki Shiomi; Haiyan Huang; Vaibhav Amin; Joshua M. Lader; Carolina Vasquez; Gregory E. Morley; Jeanine D'Armiento; Shunichi Homma; Ira J. Goldberg; Steven O. Marx
Background— Diabetes mellitus and obesity, which confer an increased risk of sudden cardiac death, are associated with cardiomyocyte lipid accumulation and altered cardiac electric properties, manifested by prolongation of the QRS duration and QT interval. It is difficult to distinguish the contribution of cardiomyocyte lipid accumulation from the contribution of global metabolic defects to the increased incidence of sudden death and electric abnormalities. Methods and Results— In order to study the effects of metabolic abnormalities on arrhythmias without the complex systemic effects of diabetes mellitus and obesity, we studied transgenic mice with cardiac-specific overexpression of peroxisome proliferator–activated receptor &ggr; 1 (PPAR&ggr;1) via the cardiac &agr;-myosin heavy-chain promoter. The PPAR&ggr; transgenic mice develop abnormal accumulation of intracellular lipids and die as young adults before any significant reduction in systolic function. Using implantable ECG telemeters, we found that these mice have prolongation of the QRS and QT intervals and spontaneous ventricular arrhythmias, including polymorphic ventricular tachycardia and ventricular fibrillation. Isolated cardiomyocytes demonstrated prolonged action potential duration caused by reduced expression and function of the potassium channels responsible for repolarization. Short-term exposure to pioglitazone, a PPAR&ggr; agonist, had no effect on mortality or rhythm in WT mice but further exacerbated the arrhythmic phenotype and increased the mortality in the PPAR&ggr; transgenic mice. Conclusions— Our findings support an important link between PPAR&ggr; activation, cardiomyocyte lipid accumulation, ion channel remodeling, and increased cardiac mortality.Background Diabetes and obesity, which confer an increased risk of sudden cardiac death, are associated with cardiomyocyte lipid accumulation and altered cardiac electrical properties, manifested by prolongation of the QRS duration and QT interval. It is difficult to distinguish the contribution of cardiomyocyte lipid accumulation versus the contribution of global metabolic defects to the increased incidence of sudden death and electrical abnormalities.
American Journal of Physiology-heart and Circulatory Physiology | 2011
Joshua M. Lader; Carolina Vasquez; Li Bao; Karen Maass; Jiaxiang Qu; Eirini Kefalogianni; Glenn I. Fishman; William A. Coetzee; Gregory E. Morley
Hypertension is associated with the development of atrial fibrillation; however, the electrophysiological consequences of this condition remain poorly understood. ATP-sensitive K(+) (K(ATP)) channels, which contribute to ventricular arrhythmias, are also expressed in the atria. We hypothesized that salt-induced elevated blood pressure (BP) leads to atrial K(ATP) channel activation and increased arrhythmia inducibility. Elevated BP was induced in mice with a high-salt diet (HS) for 4 wk. High-resolution optical mapping was used to measure atrial arrhythmia inducibility, effective refractory period (ERP), and action potential duration at 90% repolarization (APD(90)). Excised patch clamping was performed to quantify K(ATP) channel properties and density. K(ATP) channel protein expression was also evaluated. Atrial arrhythmia inducibility was 22% higher in HS hearts compared with control hearts. ERP and APD(90) were significantly shorter in the right atrial appendage and left atrial appendage of HS hearts compared with control hearts. Perfusion with 1 μM glibenclamide or 300 μM tolbutamide significantly decreased arrhythmia inducibility and prolonged APD(90) in HS hearts compared with untreated HS hearts. K(ATP) channel density was 156% higher in myocytes isolated from HS animals compared with control animals. Sulfonylurea receptor 1 protein expression was increased in the left atrial appendage and right atrial appendage of HS animals (415% and 372% of NS animals, respectively). In conclusion, K(ATP) channel activation provides a mechanistic link between salt-induced elevated BP and increased atrial arrhythmia inducibility. The findings of this study have important implications for the treatment and prevention of atrial arrhythmias in the setting of hypertensive heart disease and may lead to new therapeutic approaches.
Current Opinion in Biotechnology | 2017
Joshua M. Lader; Maxine Stachel; Lei Bu
Remarkable strides have been made in the treatment of ischemic heart disease in decades. As the initial loss of cardiomyocytes associated with myocardial infarction serves as an impetus for myocardial remodeling, the ability to replace these cells with healthy counterparts would represent an effective treatment for many forms of cardiovascular disease. The discovery of cardiac stem cells (that can differentiate into multiple lineages) highlighted the possibility for development of cell-based therapeutics to achieve this ultimate goal. Recent research features cardiac stem cell maintenance, proliferation, and differentiation, as well as direct reprogramming of various somatic cells into cardiomyocytes, all within the context of the holy grail of regeneration of the injured heart. Much work remains to be done, but the future looks bright!
Frontiers in Endocrinology | 2017
Bin Lin; Xianming Lin; Maxine Stachel; Elisha Wang; Yumei Luo; Joshua M. Lader; Xiaofang Sun; Mario Delmar; Lei Bu
With recent advances in stem cell technology, it is becoming efficient to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes, which can subsequently be used for myriad purposes, ranging from interrogating mechanisms of cardiovascular disease, developing novel cellular therapeutic approaches, as well as assessing the cardiac safety profile of compounds. However, the relative inability to acquire abundant pure and mature cardiomyocytes still hinders these applications. Recently, it was reported that glucose-depleted culture medium supplemented with lactate can facilitate purification of hPSC-derived cardiomyocytes. Here, we report that fatty acid as a lactate replacement has not only a similar purification effect but also improves the electrophysiological characteristics of hPSC-derived cardiomyocytes. Glucose-depleted culture medium supplemented with fatty acid and 3,3′,5-Triiodo-l-thyronine (T3) was used during enrichment of hPSC-derived cardiomyocytes. Compared to untreated control cells, the treated cardiomyocytes exhibited enhanced action potential (AP) maximum upstroke velocity (as shown by a significant increase in dV/dtmax), action potential amplitude, as well as AP duration at 50% (APD50) and 90% (APD90) of repolarization. The treated cardiomyocytes displayed higher sensitivity to isoproterenol, more organized sarcomeric structures, and lower proliferative activity. Expression profiling showed that various ion channel and cardiac-specific genes were elevated as well. Our results suggest that the use of fatty acid and T3 can facilitate purification and maturation of hPSC-derived cardiomyocytes.
Europace | 2011
Scott Bernstein; Srikant Duggirala; Michael Floberg; Pehr Elfvendal; Laura M. Kuznekoff; Joshua M. Lader; Carolina Vasquez; Gregory E. Morley
AIMS High recurrence rates after complex radiofrequency ablation procedures, such as for atrial fibrillation, remain a major clinical problem. Local electrophysiological changes that occur following cardiac ablation therapy are incompletely described in the literature. The purpose of this study was to determine whether alterations in conduction velocity, action potential duration (APD), and effective refractory period resolve dynamically following cardiac ablation. METHODS AND RESULTS Lesions were delivered to the right ventricle of mice using a subxiphoid approach. The sham-operated control group (SHAM) received the same procedure without energy delivery. Hearts were isolated at 0, 1, 7, 30, and 60 days following the procedure and electrophysiological parameters were obtained using high-resolution optical mapping with a voltage-sensitive dye. Conduction velocity was significantly decreased at the lesion border in the 0, 7, and 30 day groups compared to SHAM. APD(70) at the lesion border was significantly increased at all time points compared to SHAM. Effective refractory period was significantly increased at the lesion border at 0, 1, 7, and 30 days but not at 60 days post-ablation. This study demonstrated that post-ablation electrophysiological changes take place immediately following energy delivery and resolve within 60 days. CONCLUSIONS Cardiac ablation causes significant electrophysiological changes both within the lesion and beyond the border zone. Late recovery of electrical conduction in individual lesions is consistent with clinical data demonstrating that arrhythmia recurrence is associated with failure to maintain bi-directional conduction block.