Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua M. Swift is active.

Publication


Featured researches published by Joshua M. Swift.


Journal of Endocrinology | 2008

Altered bone mass, geometry and mechanical properties during the development and progression of type 2 diabetes in the Zucker diabetic fatty rat

Rhonda D. Prisby; Joshua M. Swift; Susan A. Bloomfield; Harry A. Hogan; Michael D. Delp

Osteopenia and an enhanced risk of fracture often accompany type 1 diabetes. However, the association between type 2 diabetes and bone mass has been ambiguous with reports of enhanced, reduced, or similar bone mineral densities (BMDs) when compared with healthy individuals. Recently, studies have also associated type 2 diabetes with increased fracture risk even in the presence of higher BMDs. To determine the temporal relationship between type 2 diabetes and bone remodeling structural and mechanical properties at various bone sites were analyzed during pre-diabetes (7 weeks), short-term (13 weeks), and long-term (20 weeks) type 2 diabetes. BMDs and bone strength were measured in the femora and tibiae of Zucker diabetic fatty rats, a model of human type 2 diabetes. Increased BMDs (9-10%) were observed in the distal femora, proximal tibiae, and tibial mid- shafts in the pre-diabetic condition that corresponded with higher plasma insulin levels. During short- and long-term type 2 diabetes, various parameters of bone strength and BMDs were lower (9-26%) in the femoral neck, distal femora, proximal tibiae, and femoral and tibial mid-shafts. Correspondingly, blood glucose levels increased by 125% and 153% during short- and long-term diabetes respectively. These data indicate that alterations in BMDs and bone mechanical properties are closely associated with the onset of hyperinsulinemia and hyperglycemia, which may have direct adverse effects on skeletal tissue. Consequently, disparities in the human literature regarding the effects of type 2 diabetes on skeletal properties may be associated with the bone sites studied and the severity or duration of the disease in the patient population studied.


Journal of Bone and Mineral Research | 2010

Simulated resistance training during hindlimb unloading abolishes disuse bone loss and maintains muscle strength.

Joshua M. Swift; Mats I. Nilsson; Harry A. Hogan; Lindsay R Sumner; Susan A. Bloomfield

This study was designed to determine the effectiveness of simulated resistance training (SRT) without weight bearing in attenuating bone and muscle loss during 28 day hindlimb unloading (HU) in mature male rats. An ambulatory control group (CC) and four groups of HU rats were used: HU, HU + anesthesia (ANHU), HU + eccentric muscle contractions (HU + ECC), and HU + isometric and eccentric muscle contractions (HU + ISO/ECC). Animals in the two SRT groups were trained once every other day at 100% daily peak isometric torque (P0). HU resulted in significantly lower plantarflexor muscle mass (−33% versus CC) and reduced isometric strength (−10%), which reductions were partially attenuated in both training groups. Significantly reduced total and cancellous volumetric bone mineral density (vBMD) and total bone mineral content (BMC) at the proximal tibia metaphysis (PTM) also was evidenced in HU and ANHU groups compared with both SRT groups (p < .05). Training resulted in greater increases in cortical bone mass and area compared with all other groups (p < .05). Fourfold higher material properties of PTM cancellous bone were demonstrated in SRT animals versus HU or CC animals. A significant reduction in midshaft periosteal bone formation rate (BFR) in the HU group (−99% versus CC) was completely abolished in HU + ECC (+656% versus CC). These results demonstrate that high‐intensity muscle contractions, independent of weight‐bearing forces, can effectively mitigate losses in muscle strength and provide a potent stimulus to bone during prolonged disuse.


Journal of Applied Physiology | 2012

Simulated resistance training, but not alendronate, increases cortical bone formation and suppresses sclerostin during disuse.

Brandon R. Macias; Joshua M. Swift; Mats I. Nilsson; Harry A. Hogan; S. D. Bouse; Susan A. Bloomfield

Mechanical loading modulates the osteocyte-derived protein sclerostin, a potent inhibitor of bone formation. We hypothesized that simulated resistance training (SRT), combined with alendronate (ALEN) treatment, during hindlimb unloading (HU) would most effectively mitigate disuse-induced decrements in cortical bone geometry and formation rate (BFR). Sixty male, Sprague-Dawley rats (6-mo-old) were randomly assigned to either cage control (CC), HU, HU plus either ALEN (HU+ALEN), or SRT (HU+SRT), or combined ALEN and SRT (HU+SRT/ALEN) for 28 days. Computed tomography scans on days -1 and 28 were taken at the middiaphyseal tibia. HU+SRT and HU+SRT/ALEN rats were subjected to muscle contractions once every 3 days during HU (4 sets of 5 repetitions; 1,000 ms isometric + 1,000 ms eccentric). The HU+ALEN and HU+SRT/ALEN rats received 10 μg/kg ALEN 3 times/wk. Compared with the CC animals, HU suppressed the normal slow growth-induced increases of cortical bone mineral content, cortical bone area, and polar cross-sectional moment of inertia; however, SRT during HU restored cortical bone growth. HU suppressed middiaphyseal tibia periosteal BFR by 56% vs. CC (P < 0.05). However, SRT during HU restored BFR at both periosteal (to 2.6-fold higher than CC) and endocortical (14-fold higher than CC) surfaces (P < 0.01). ALEN attenuated the SRT-induced BFR gains during HU. The proportion of sclerostin-positive osteocytes in cortical bone was significantly higher (+121% vs. CC) in the HU group; SRT during HU effectively suppressed the higher proportion of sclerostin-positive osteocytes. In conclusion, a minimum number of high-intensity muscle contractions, performed during disuse, restores cortical BFR and suppress unloading-induced increases in sclerostin-positive osteocytes.


Journal of Bone and Mineral Research | 2011

Cancellous bone formation response to simulated resistance training during disuse is blunted by concurrent alendronate treatment

Joshua M. Swift; Sibyl N. Swift; Mats I. Nilsson; Harry A. Hogan; S. D. Bouse; Susan A. Bloomfield

The purpose of this study was to assess the effectiveness of simulated resistance training (SRT) exercise combined with alendronate (ALEN) in mitigating or preventing disuse‐associated losses in cancellous bone microarchitecture and formation. Sixty male Sprague‐Dawley rats (6 months old) were randomly assigned to either cage control (CC), hind limb unloading (HU), HU plus either ALEN (HU + ALEN), SRT (HU + SRT), or a combination of ALEN and SRT (HU + SRT/ALEN) for 28 days. HU + SRT and HU + SRT/ALEN rats were anesthetized and subjected to muscle contractions once every 3 days during HU (four sets of five repetitions, 1000 ms isometric + 1000 ms eccentric). Additionally, HU + ALEN and HU + SRT/ALEN rats received 10 µg/kg of body weight of ALEN three times per week. HU reduced cancellous bone‐formation rate (BFR) by 80%, with no effect of ALEN treatment (−85% versus CC). SRT during HU significantly increased cancellous BFR by 123% versus CC, whereas HU + SRT/ALEN inhibited the anabolic effect of SRT (−70% versus HU + SRT). SRT increased bone volume and trabecular thickness by 19% and 9%, respectively, compared with CC. Additionally, osteoid surface (OS/BS) was significantly greater in HU + SRT rats versus CC (+32%). Adding ALEN to SRT during HU reduced Oc.S/BS (−75%), Ob.S/BS (−72%), OS/BS (−61%), and serum TRACP5b (−36%) versus CC. SRT and ALEN each independently suppressed a nearly twofold increase in adipocyte number evidenced with HU and inhibited increases in osteocyte apoptosis. These results demonstrate the anabolic effect of a low volume of high‐intensity muscle contractions during disuse and suggest that both bone resorption and bone formation are suppressed when SRT is combined with bisphosphonate treatment.


PLOS ONE | 2015

Hemorrhage Exacerbates Radiation Effects on Survival, Leukocytopenia, Thrombopenia, Erythropenia, Bone Marrow Cell Depletion and Hematopoiesis, and Inflammation-Associated microRNAs Expression in Kidney.

Juliann G. Kiang; Joan T. Smith; Marsha N. Anderson; Joshua M. Swift; Christine L. Christensen; Paridhi Gupta; Nagaraja S. Balakathiresan; Radha K. Maheshwari

Exposure to high-dose radiation results in detrimental effects on survival. The effects of combined trauma, such as radiation in combination with hemorrhage, the typical injury of victims exposed to a radiation blast, on survival and hematopoietic effects have yet to be understood. The purpose of this study was to evaluate the effects of radiation injury (RI) combined with hemorrhage (i.e., combined injury, CI) on survival and hematopoietic effects, and to investigate whether hemorrhage (Hemo) enhanced RI-induced mortality and hematopoietic syndrome. Male CD2F1 mice (10 weeks old) were given one single exposure of γ- radiation (60Co) at various doses (0.6 Gy/min). Within 2 hr after RI, animals under anesthesia were bled 0% (Sham) or 20% (Hemo) of total blood volume via the submandibular vein. In these mice, Hemo reduced the LD50/30 for 30-day survival from 9.1 Gy (RI) to 8.75 Gy (CI) with a DMF of 1.046. RI resulted in leukocytopenia, thrombopenia, erythropenia, and bone marrow cell depletion, but decreased the caspase-3 activation response. RI increased IL-1β, IL-6, IL-17A, and TNF-α concentrations in serum, bone marrow, ileum, spleen, and kidney. Some of these adverse alterations were magnified by CI. Erythropoietin production was increased in kidney and blood more after CI than RI. Furthermore, CI altered the global miRNAs expression in kidney and the ingenuity pathway analysis showed that miRNAs viz., let-7e, miR-30e and miR-29b that were associated with hematopoiesis and inflammation. This study provides preliminary evidence that non-lethal Hemo exacerbates RI-induced mortality and cell losses associated with high-dose γ-radiation. We identified some of the initial changes occurring due to CI which may have facilitated in worsening the injury and hampering the recovery of animals ultimately resulting in higher mortality.


Journal of Nutrition | 2012

Restriction of Dietary Energy Intake Has a Greater Impact on Bone Integrity Than Does Restriction of Calcium in Exercising Female Rats

Sibyl N. Swift; Kyunghwa Baek; Joshua M. Swift; Susan A. Bloomfield

We sought to elucidate the effects of restricting calcium, energy, or food on the skeletal integrity of exercising female rats. Female Sprague-Dawley rats (4 mo old) were randomly assigned to 5 groups (n = 10/group): ad libitum intake of an AIN-93M diet (Research Diets D10012M, Research Diets, Inc.) with no exercise (AL-S) or with exercise (AL-EX) or to 1 of 3 exercising restriction groups [40% restriction of calcium only (CAR-EX), energy only (ER-EX), or food (FR-EX)]. All EX rats were treadmill trained 3 d/wk, 45 min/d for 12 wk at ~60% maximal oxygen consumption. After 12 wk, total body bone mineral content (by DXA) and body mass, but not lean mass, were lower in ER-EX (-17%) and FR-EX rats (-13%) compared with the AL-EX group. CAR-EX had few negative effects on bone geometry (by peripheral quantitative computed tomography) or histomorphometry. However, declines in total volumetric bone mineral density at the proximal tibia metaphysic (PTM) were observed in ER-EX (-6%) and FR-EX (-8%) groups; only FR-EX rats exhibited increased osteoclast surface and decreased mineral apposition rate in PTM cancellous bone. Decrements in serum estradiol, uterine weights, or both in these 2 groups implicate altered estrogen status as contributory. Urine pH declined significantly by 12 wk in all restricted groups, but net acid excretion increased only in CAR-EX rats. These findings, when compared with published data on sedentary rats, suggest that treadmill running exercise may mitigate some, but not all, deleterious effects on bone after chronic energy or food restriction but is more protective during calcium restriction.


Journal of Applied Physiology | 2010

Increased training loads do not magnify cancellous bone gains with rodent jump resistance exercise

Joshua M. Swift; Heath G. Gasier; Sibyl N. Swift; Michael P. Wiggs; Harry A. Hogan; James D. Fluckey; Susan A. Bloomfield

This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cancellous bone of the proximal tibia metaphysis (PTM) and femoral neck (FN). Sprague-Dawley rats (male, 6 mo old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or sedentary cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE during 5 wk of training. PTM cancellous volumetric bone mineral density (vBMD), assessed by in vivo peripheral quantitative computed tomography scans, significantly increased in both exercise groups (+9%; P < 0.001), resulting in part from 130% (HRE; P = 0.003) and 213% (LRE; P < 0.0001) greater bone formation (measured by standard histomorphometry) vs. CC. Additionally, mineralizing surface (%MS/BS) and mineral apposition rate were higher (50-90%) in HRE and LRE animals compared with controls. PTM bone microarchitecture was enhanced with LRE, resulting in greater trabecular thickness (P = 0.03) and bone volume fraction (BV/TV; P = 0.04) vs. CC. Resorption surface was reduced by nearly 50% in both exercise paradigms. Increased PTM bone mass in the LRE group translated into a 161% greater elastic modulus (P = 0.04) vs. CC. LRE and HRE increased FN vBMD (10%; P < 0.0001) and bone mineral content (∼ 20%; P < 0.0001) and resulted in significantly greater FN strength vs. CC. For the vast majority of variables, there was no difference in the cancellous bone response between the two exercise groups, although LRE resulted in significantly greater body mass accrual and bone formation response. These results suggest that jumping at minimal resistance provides a similar anabolic stimulus to cancellous bone as jumping at loads exceeding body mass.


Medicine and Science in Sports and Exercise | 2013

β-1 adrenergic agonist mitigates unloading-induced bone loss by maintaining formation.

Joshua M. Swift; Harry A. Hogan; Susan A. Bloomfield

INTRODUCTION Recent data indicate a direct relationship between the sympathetic nervous system and bone metabolism. The purpose of this study was to evaluate the effects of a beta-1 adrenergic (Adrb1) agonist, dobutamine (DOB), on disuse-induced changes in bone integrity during 28 d of hindlimb unloading (HU). METHODS Male Sprague-Dawley rats, age 6 months, were assigned to either a normal cage activity (CC) or HU (n = 24/group). Animals were given one daily bolus dose (4 mg·kg body weight a day) of DOB (n = 12) or an equal volume of saline (VEH, n = 12). RESULTS In vivo peripheral quantitative computed tomography scans revealed a 9% loss in proximal tibia metaphysis (PTM) volumetric bone mineral density (vBMD) over 28 d of disuse. DOB administration during HU significantly attenuated reductions in PTM vBMD and inhibited reductions in mid-diaphysis tibia cross-sectional moment of inertia. A significant decline in PTM bone formation rate in the HU-VEH group (-56% vs CC-VEH) was completely abolished in the HU-DOB group. Significant reductions in strength of the femoral shaft and neck in the HU-VEH group (14% and 15%, respectively) were prevented with DOB treatment. CONCLUSION In conclusion, DOB administration during HU effectively attenuates significant declines in total vBMD at PTM by mitigating associated decrements in bone formation rate. Positive effects of DOB were observed only in unloaded animals, with no effects observed in normal weight-bearing rats. These data provide evidence for the importance of Adrb1 signaling in maintaining osteoblast function during periods of mechanical unloading.


Medicine and Science in Sports and Exercise | 2013

Partial Weight Bearing Does Not Prevent Musculoskeletal Losses Associated with Disuse

Joshua M. Swift; Florence Lima; Brandon R. Macias; Matthew R. Allen; Elizabeth Greene; Yasaman Shirazi-Fard; Joshua S. Kupke; Harry A. Hogan; Susan A. Bloomfield

PURPOSE The purpose of this study was to investigate whether partial weight-bearing activity, at either one-sixth or one-third of body mass, blunts the deleterious effects of simulated microgravity (0G) after 21 d on muscle mass and quantitative/qualitative measures of bone. METHODS Using a novel, previously validated partial weight-bearing suspension device, mice were subjected to 16% (G/3, i.e., simulated lunar gravity) or 33% (G/6, i.e., simulated Martian gravity) weight bearing for 21 d. One gravity control (1G, i.e., Earth gravity) and tail-suspended mice (0G, i.e., simulated microgravity) served as controls to compare the effects of simulated lunar and Martian gravity to both Earth and microgravity. RESULTS Simulated microgravity (0G) resulted in an 8% reduction in body mass and a 28% lower total plantarflexor muscle mass (for both, P < 0.01) as compared with 1G controls, but one-sixth and one-third partial weight-bearing activity attenuated losses. Relative to 1G controls, trabecular bone volume fraction (-9% to -13%) and trabecular thickness (-10% to -14%) were significantly lower in all groups (P < 0.01). In addition, cancellous and cortical bone formation rates (BFR) were lower in all reduced weight-bearing groups compared with 1G controls (-46% to -57%, trabecular BFR; -73% to -85%, cortical BFR; P < 0.001). Animals experiencing one-third but not one-sixth weight bearing exhibited attenuated deficits in femoral neck mechanical strength associated with 0G. CONCLUSION These results suggest that partial weight bearing (up to 33% of body mass) is not sufficient to protect against bone loss observed with simulated 0 g but does mitigate reductions in soleus mass in skeletally mature female mice.


Radiation Research | 2016

Simulating the Lunar Environment: Partial Weightbearing and High-LET Radiation-Induce Bone Loss and Increase Sclerostin-Positive Osteocytes

Brandon R. Macias; Florence Lima; Joshua M. Swift; Yasaman Shirazi-Fard; Elizabeth Greene; Matthew R. Allen; James D. Fluckey; Harry A. Hogan; L.A. Braby; Suojin Wang; Susan A. Bloomfield

Exploration missions to the Moon or Mars will expose astronauts to galactic cosmic radiation and low gravitational fields. Exposure to reduced weightbearing and radiation independently result in bone loss. However, no data exist regarding the skeletal consequences of combining low-dose, high-linear energy transfer (LET) radiation and partial weightbearing. We hypothesized that simulated galactic cosmic radiation would exacerbate bone loss in animals held at one-sixth body weight (G/6) without radiation exposure. Female BALB/cByJ four-month-old mice were randomly assigned to one of the following treatment groups: 1 gravity (1G) control; 1G with radiation; G/6 control; and G/6 with radiation. Mice were exposed to either silicon-28 or X-ray radiation. 28Si radiation (300 MeV/nucleon) was administered at acute doses of 0 (sham), 0.17 and 0.5 Gy, or in three fractionated doses of 0.17 Gy each over seven days. X radiation (250 kV) was administered at acute doses of 0 (sham), 0.17, 0.5 and 1 Gy, or in three fractionated doses of 0.33 Gy each over 14 days. Bones were harvested 21 days after the first exposure. Acute 1 Gy X-ray irradiation during G/6, and acute or fractionated 0.5 Gy 28Si irradiation during 1G resulted in significantly lower cancellous mass [percentage bone volume/total volume (%BV/TV), by microcomputed tomography]. In addition, G/6 significantly reduced %BV/TV compared to 1G controls. When acute X-ray irradiation was combined with G/6, distal femur %BV/TV was significantly lower compared to G/6 control. Fractionated X-ray irradiation during G/6 protected against radiation-induced losses in %BV/TV and trabecular number, while fractionated 28Si irradiation during 1G exacerbated the effects compared to single-dose exposure. Impaired bone formation capacity, measured by percentage mineralizing surface, can partially explain the lower cortical bone thickness. Moreover, both partial weightbearing and 28Si-ion exposure contribute to a higher proportion of sclerostin-positive osteocytes in cortical bone. Taken together, these data suggest that partial weightbearing and low-dose, high-LET radiation negatively impact maintenance of bone mass by lowering bone formation and increasing bone resorption. The impaired bone formation response is associated with sclerostin-induced suppression of Wnt signaling. Therefore, exposure to low-dose, high-LET radiation during long-duration spaceflight missions may reduce bone formation capacity, decrease cancellous bone mass and increase bone resorption. Future countermeasure strategies should aim to restore mechanical loads on bone to those experienced in one gravity. Moreover, low-doses of high-LET radiation during long-duration spaceflight should be limited or countermeasure strategies employed to mitigate bone loss.

Collaboration


Dive into the Joshua M. Swift's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joan T. Smith

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Juliann G. Kiang

Uniformed Services University of the Health Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge