Joshua Pepper
Lehigh University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joshua Pepper.
Proceedings of SPIE | 2014
George R. Ricker; Joshua N. Winn; R. Vanderspek; David W. Latham; G. Á. Bakos; Jacob L. Bean; Zachory K. Berta-Thompson; Timothy M. Brown; Lars A. Buchhave; Nathaniel R. Butler; R. Paul Butler; W. J. Chaplin; David Charbonneau; Jørgen Christensen-Dalsgaard; Mark Clampin; Drake Deming; John P. Doty; Nathan De Lee; Courtney D. Dressing; Edward W. Dunham; Michael Endl; Francois Fressin; Jian Ge; Thomas Henning; Matthew J. Holman; Andrew W. Howard; Shigeru Ida; Jon M. Jenkins; Garrett Jernigan; John Asher Johnson
The Transiting Exoplanet Survey Satellite (TESS ) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with IC (approximately less than) 13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the stars ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every four months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.
Journal of Astronomical Telescopes, Instruments, and Systems | 2014
George R. Ricker; Joshua N. Winn; R. Vanderspek; David W. Latham; G. Á. Bakos; Jacob L. Bean; Zachory K. Berta-Thompson; Timothy M. Brown; Lars A. Buchhave; Nathaniel R. Butler; R. Paul Butler; W. J. Chaplin; David Charbonneau; Jørgen Christensen-Dalsgaard; Mark Clampin; Drake Deming; John P. Doty; Nathan De Lee; Courtney D. Dressing; Edward W. Dunham; Michael Endl; Francois Fressin; Jian Ge; Thomas Henning; Matthew J. Holman; Andrew W. Howard; Shigeru Ida; Jon M. Jenkins; Garrett Jernigan; John Asher Johnson
Abstract. The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its 2-year mission, TESS will employ four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars with IC≈4−13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from 1 month to 1 year, depending mainly on the star’s ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10 to 100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.
Astrophysical Journal Supplement Series | 2014
Christopher J. Burke; Stephen T. Bryson; Fergal Mullally; Jason F. Rowe; Jessie L. Christiansen; Susan E. Thompson; Jeffrey L. Coughlin; Michael R. Haas; Natalie M. Batalha; Douglas A. Caldwell; Jon M. Jenkins; Martin Still; William J. Borucki; W. J. Chaplin; David R. Ciardi; Bruce D. Clarke; William D. Cochran; Brice-Olivier Demory; Gilbert A. Esquerdo; Thomas N. Gautier; Ronald L. Gilliland; Forrest R. Girouard; Mathieu Havel; Christopher E. Henze; Steve B. Howell; Daniel Huber; David W. Latham; Jie Li; Robert C. Morehead; Timothy D. Morton
We provide updates to the Kepler planet candidate sample based upon nearly two years of highprecision photometry (i.e., Q1-Q8). From an initial list of nearly 13,400 Threshold Crossing Events (TCEs), 480 new host stars are identified from their flux time series as consistent with hosting transiting planets. Potential transit signals are subjected to further analysis using the pixel-level data, which allows background eclipsing binaries to be identified through small image position shifts during transit. We also re-evaluate Kepler Objects of Interest (KOI) 1-1609, which were identified early in the mission, using substantially more data to test for background false positives and to find additional multiple systems. Combining the new and previous KOI samples, we provide updated parameters for 2,738 Kepler planet candidates distributed across 2,017 host stars. From the combined Kepler planet candidates, 472 are new from the Q1-Q8 data examined in this study. The new Kepler planet candidates represent ∼40% of the sample with RP∼1R⊕ and represent ∼40% of the low equilibrium temperature (Teq<300 K) sample. We review the known biases in the current sample of Kepler planet candidates relevant to evaluating planet population statistics with the current Kepler planet candidate sample. Subject headings: catalogs – eclipses – planetary systems – space vehicles
The Astrophysical Journal | 2012
Philip S. Muirhead; John Asher Johnson; Kevin Apps; Joshua A. Carter; Timothy D. Morton; Daniel C. Fabrycky; John Sebastian Pineda; Michael Bottom; Bárbara Rojas-Ayala; Everett Schlawin; Katherine Hamren; Kevin R. Covey; Justin R. Crepp; Keivan G. Stassun; Joshua Pepper; L. Hebb; Evan N. Kirby; Andrew W. Howard; Howard Isaacson; Geoffrey W. Marcy; David Levitan; T. Díaz-Santos; Lee Armus; James P. Lloyd
We present the characterization of the star KOI 961, an M dwarf with transit signals indicative of three short-period exoplanets, originally discovered by the Kepler Mission. We proceed by comparing KOI 961 to Barnards Star, a nearby, well-characterized mid-M dwarf. By comparing colors, optical and near-infrared spectra, we find remarkable agreement between the two, implying similar effective temperatures and metallicities. Both are metal-poor compared to the Solar neighborhood, have low projected rotational velocity, high absolute radial velocity, large proper motion and no quiescent H-alpha emission--all of which is consistent with being old M dwarfs. We combine empirical measurements of Barnards Star and expectations from evolutionary isochrones to estimate KOI 961s mass (0.13 ± 0.05 M_⊙), radius (0.17 ± 0.04 R_⊙) and luminosity (2.40 x 10^(-3.0 ± 0.3) L_⊙). We calculate KOI 961s distance (38.7 ± 6.3 pc) and space motions, which, like Barnards Star, are consistent with a high scale-height population in the Milky Way. We perform an independent multi-transit fit to the public Kepler light curve and significantly revise the transit parameters for the three planets. We calculate the false-positive probability for each planet-candidate, and find a less than 1% chance that any one of the transiting signals is due to a background or hierarchical eclipsing binary, validating the planetary nature of the transits. The best-fitting radii for all three planets are less than 1 Re_⊕, with KOI 961.03 being Mars-sized (Rp = 0.57 ± 0.18 R_⊕), and they represent some of the smallest exoplanets detected to date.
The Astrophysical Journal | 2012
Robert J. Siverd; Thomas G. Beatty; Joshua Pepper; Jason D. Eastman; Karen A. Collins; Allyson Bieryla; David W. Latham; Lars A. Buchhave; Eric L. N. Jensen; Justin R. Crepp; R. A. Street; Keivan G. Stassun; B. Scott Gaudi; Perry L. Berlind; Michael L. Calkins; D. L. DePoy; Gilbert A. Esquerdo; Benjamin J. Fulton; Gábor Fűrész; John C. Geary; Andrew Gould; L. Hebb; John F. Kielkopf; J. L. Marshall; Richard W. Pogge; K. Z. Stanek; Robert P. Stefanik; Andrew Szentgyorgyi; Mark Trueblood; Patricia Trueblood
We present the discovery of KELT-1b, the first transiting low-mass companion from the wide-field Kilodegree Extremely Little Telescope-North (KELT-North) transit survey. A joint analysis of the spectroscopic, radial velocity, and photometric data indicates that the V = 10.7 primary is a mildly evolved mid-F star with Teff = 6516±49 K, log g = 4.228 +0.014 −0.021, and [Fe/H] = 0.052±0.079, with an inferred mass M∗ = 1.335 ± 0.063 M� and radius R∗ = 1.471 +0.045 −0.035 R� . The companion is a low-mass brown dwarf or a super-massive planet with mass MP = 27.38 ± 0.93 MJup and radius RP = 1.116 +0.038 −0.029 RJup. The companion is on a very short (∼29 hr) period circular orbit, with an ephemeris Tc(BJDTDB) = 2455909.29280 ± 0.00023 and P = 1.217501 ± 0.000018 days. KELT-1b receives a large amount of stellar insolation, resulting in an estimated equilibrium temperature assuming zero albedo and perfect redistribution of Teq = 2423 +3427 K. Comparison with standard evolutionary models suggests that the radius of KELT-1b is likely to be significantly inflated. Adaptive optics imaging reveals a candidate stellar companion to KELT-1 with a separation of 588 ± 1 mas, which is consistent with an M dwarf if it is at the same distance as the primary. Rossiter–McLaughlin measurements during transit imply a projected spin–orbit alignment angle λ = 2 ± 16 deg, consistent with a zero obliquity for KELT-1. Finally, the v sin I∗ = 56 ± 2k m s −1 of the primary is consistent at ∼2σ with tidal synchronization. Given the extreme parameters of the KELT-1 system, we expect it to provide an important testbed for theories of the emplacement and evolution of short-period companions, as well as theories of tidal dissipation and irradiated brown dwarf atmospheres.
Publications of the Astronomical Society of the Pacific | 2007
Joshua Pepper; Richard W. Pogge; D. L. DePoy; J. L. Marshall; K. Z. Stanek; Amelia M. Stutz; Shawn Poindexter; Robert Siverd; Thomas P. O’Brien; Mark Trueblood; Patricia Trueblood
ABSTRACT The Kilodegree Extremely Little Telescope (KELT) project is a survey for planetary transits of bright stars. It consists of a small‐aperture, wide‐field automated telescope located at Winer Observatory near Sonoita, Arizona. The telescope surveys a set of 26° × 26° fields that together cover about 25% of the northern sky, and targets stars in the range of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape
Proceedings of SPIE | 2016
George R. Ricker; Joshua N. Winn; R. Vanderspek; David W. Latham; G. Á. Bakos; Jacob L. Bean; Zachory K. Berta-Thompson; Timothy M. Brown; Lars A. Buchhave; Nathaniel R. Butler; R. Paul Butler; W. J. Chaplin; David Charbonneau; Jørgen Christensen-Dalsgaard; Mark Clampin; Drake Deming; John P. Doty; Nathan De Lee; Courtney D. Dressing; Edward W. Dunham; Michael Endl; Francois Fressin; Jian Ge; Thomas Henning; Matthew J. Holman; Andrew W. Howard; Shigeru Ida; Jon M. Jenkins; Garrett Jernigan; John Asher Johnson
8< V< 10
Nature | 2013
Fabienne A. Bastien; Keivan G. Stassun; Gibor Basri; Joshua Pepper
\end{document} mag, searching for transits by close‐in Jupiters. This paper describes the system hardware and...
The Astronomical Journal | 2016
Brian Kirk; Kyle E. Conroy; Andrej Prsa; Michael Abdul-Masih; Angela Kochoska; G. Matijevic; Kelly Hambleton; S. Bloemen; Tabetha S. Boyajian; Laurance R. Doyle; Benjamin J. Fulton; Abe J. Hoekstra; Kian J. Jek; Stephen R. Kane; Veselin Kostov; David W. Latham; Tsevi Mazeh; Jerome A. Orosz; Joshua Pepper; Billy Quarles; Darin Ragozzine; Avi Shporer; J. Southworth; Keivan G. Stassun; Susan E. Thompson; William F. Welsh; Eric Agol; A. Derekas; Jonathan Devor; Debra A. Fischer
The Transiting Exoplanet Survey Satellite (TESS ) will search the solar neighborhood for planets transiting bright stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with IC 13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending on the star’s ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10–100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every four months, inviting immediate Correspondence may be sent to George R. Ricker ([email protected]). Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, edited by Howard A. MacEwen, Giovanni G. Fazio, Makenzie Lystrup, Proc. of SPIE Vol. 9904, 99042B ·
Publications of the Astronomical Society of the Pacific | 2012
Karen Kinemuchi; Thomas Barclay; Michael N. Fanelli; Joshua Pepper; Martin D. Still; Steve B. Howell
Surface gravity is a basic stellar property, but it is difficult to measure accurately, with typical uncertainties of 25 to 50 per cent if measured spectroscopically and 90 to 150 per cent if measured photometrically. Asteroseismology measures gravity with an uncertainty of about 2 per cent but is restricted to relatively small samples of bright stars, most of which are giants. The availability of high-precision measurements of brightness variations for more than 150,000 stars provides an opportunity to investigate whether the variations can be used to determine surface gravities. The Fourier power of granulation on a star’s surface correlates physically with surface gravity: if brightness variations on timescales of hours arise from granulation, then such variations should correlate with surface gravity. Here we report an analysis of archival data that reveals an observational correlation between surface gravity and root mean squared brightness variations on timescales of less than eight hours for stars with temperatures of 4,500 to 6,750 kelvin, log surface gravities of 2.5 to 4.5 (cgs units) and overall brightness variations of less than three parts per thousand. A straightforward observation of optical brightness variations therefore allows a determination of the surface gravity with a precision of better than 25 per cent for inactive Sun-like stars at main-sequence to giant stages of evolution.