Thomas G. Beatty
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas G. Beatty.
Nature Biotechnology | 2004
Frank W. Larimer; Patrick Chain; Loren Hauser; Jane E. Lamerdin; Stephanie Malfatti; Long Do; Miriam Land; Dale A. Pelletier; Thomas G. Beatty; Andrew S. Lang; F. Robert Tabita; Janet L. Gibson; Cedric Bobst; Janelle L. Torres y Torres; Caroline Peres; Faith H. Harrison; Jane Gibson; Caroline S. Harwood
Rhodopseudomonas palustris is among the most metabolically versatile bacteria known. It uses light, inorganic compounds, or organic compounds, for energy. It acquires carbon from many types of green plant–derived compounds or by carbon dioxide fixation, and it fixes nitrogen. Here we describe the genome sequence of R. palustris, which consists of a 5,459,213-base-pair (bp) circular chromosome with 4,836 predicted genes and a plasmid of 8,427 bp. The sequence reveals genes that confer a remarkably large number of options within a given type of metabolism, including three nitrogenases, five benzene ring cleavage pathways and four light harvesting 2 systems. R. palustris encodes 63 signal transduction histidine kinases and 79 response regulator receiver domains. Almost 15% of the genome is devoted to transport. This genome sequence is a starting point to use R. palustris as a model to explore how organisms integrate metabolic modules in response to environmental perturbations.
The Astrophysical Journal | 2012
Robert J. Siverd; Thomas G. Beatty; Joshua Pepper; Jason D. Eastman; Karen A. Collins; Allyson Bieryla; David W. Latham; Lars A. Buchhave; Eric L. N. Jensen; Justin R. Crepp; R. A. Street; Keivan G. Stassun; B. Scott Gaudi; Perry L. Berlind; Michael L. Calkins; D. L. DePoy; Gilbert A. Esquerdo; Benjamin J. Fulton; Gábor Fűrész; John C. Geary; Andrew Gould; L. Hebb; John F. Kielkopf; J. L. Marshall; Richard W. Pogge; K. Z. Stanek; Robert P. Stefanik; Andrew Szentgyorgyi; Mark Trueblood; Patricia Trueblood
We present the discovery of KELT-1b, the first transiting low-mass companion from the wide-field Kilodegree Extremely Little Telescope-North (KELT-North) transit survey. A joint analysis of the spectroscopic, radial velocity, and photometric data indicates that the V = 10.7 primary is a mildly evolved mid-F star with Teff = 6516±49 K, log g = 4.228 +0.014 −0.021, and [Fe/H] = 0.052±0.079, with an inferred mass M∗ = 1.335 ± 0.063 M� and radius R∗ = 1.471 +0.045 −0.035 R� . The companion is a low-mass brown dwarf or a super-massive planet with mass MP = 27.38 ± 0.93 MJup and radius RP = 1.116 +0.038 −0.029 RJup. The companion is on a very short (∼29 hr) period circular orbit, with an ephemeris Tc(BJDTDB) = 2455909.29280 ± 0.00023 and P = 1.217501 ± 0.000018 days. KELT-1b receives a large amount of stellar insolation, resulting in an estimated equilibrium temperature assuming zero albedo and perfect redistribution of Teq = 2423 +3427 K. Comparison with standard evolutionary models suggests that the radius of KELT-1b is likely to be significantly inflated. Adaptive optics imaging reveals a candidate stellar companion to KELT-1 with a separation of 588 ± 1 mas, which is consistent with an M dwarf if it is at the same distance as the primary. Rossiter–McLaughlin measurements during transit imply a projected spin–orbit alignment angle λ = 2 ± 16 deg, consistent with a zero obliquity for KELT-1. Finally, the v sin I∗ = 56 ± 2k m s −1 of the primary is consistent at ∼2σ with tidal synchronization. Given the extreme parameters of the KELT-1 system, we expect it to provide an important testbed for theories of the emplacement and evolution of short-period companions, as well as theories of tidal dissipation and irradiated brown dwarf atmospheres.
The Astrophysical Journal | 2013
C. J. Grier; Bradley M. Peterson; K. Horne; Misty C. Bentz; Richard W. Pogge; K. D. Denney; G. De Rosa; Paul Martini; C. S. Kochanek; Ying Zu; B. J. Shappee; Robert J. Siverd; Thomas G. Beatty; S. G. Sergeev; Shai Kaspi; C. Araya Salvo; Jonathan C. Bird; D. J. Bord; G. A. Borman; Xiao Che; Chien-Ting J. Chen; Seth A. Cohen; Matthias Dietrich; V. T. Doroshenko; Yu. S. Efimov; N. Free; I. Ginsburg; C. B. Henderson; Ashley L. King; K. Mogren
We present velocity-resolved reverberation results for five active galactic nuclei. We recovered velocity-delay maps using the maximum entropy method for four objects: Mrk 335, Mrk 1501, 3C?120, and PG?2130+099. For the fifth, Mrk 6, we were only able to measure mean time delays in different velocity bins of the H? emission line. The four velocity-delay maps show unique dynamical signatures for each object. For 3C?120, the Balmer lines show kinematic signatures consistent with both an inclined disk and infalling gas, but the He II??4686 emission line is suggestive only of inflow. The Balmer lines in Mrk 335, Mrk 1501, and PG?2130+099 show signs of infalling gas, but the He II emission in Mrk 335 is consistent with an inclined disk. We also see tentative evidence of combined virial motion and infalling gas from the velocity-binned analysis of Mrk 6. The maps for 3C?120 and Mrk 335 are two of the most clearly defined velocity-delay maps to date. These maps constitute a large increase in the number of objects for which we have resolved velocity-delay maps and provide evidence supporting the reliability of reverberation-based black hole mass measurements.
The Astrophysical Journal | 2008
Thomas G. Beatty; B. Scott Gaudi
We develop a method for predicting the yield of transiting planets from a photometric survey given the parameters of thesurvey(nightsobserved,bandpass,exposuretime,telescopeaperture,locationsof thetargetfields,observational conditions, and detector characteristics), as well as the underlying planet properties (frequency, period and radius distributions). Using our updated understanding of transit surveys provided by the experiences of the survey teams, we account for those factors that have proven to have the greatest effect on the survey yields. Specifically, we include the effects of the surveys’ window functions, adopt revised estimates of the giant planet frequency, account for the number and distribution of main-sequence stars in the survey fields, and include the effects of Galactic structure and interstellar extinction. We approximate the detectability of a planetary transit using a signal-to-noise ratio (S/N) formulation. We argue that our choice of detection criterion is the most uncertain input to our predictions, and has the largesteffectontheresultingplanetyield.Thus,drawingrobustinferencesaboutthefrequencyof planetsfromtransit surveys will require that the survey teams impose and report objective, systematic, and quantifiable detection criteria. Nevertheless, with reasonable choices for the minimum S/N, we calculate yields that are generally lower, more accurate, and more realistic than previous predictions. As examples, we apply our method to the Trans-Atlantic Exoplanet Survey, the XO survey, and the Kepler mission. We discuss red noise and its possible effects on planetary detections. We conclude with estimates of the expected detection rates for future wide-angle synoptic surveys.
The Astrophysical Journal | 2012
C. J. Grier; Bradley M. Peterson; Richard W. Pogge; K. D. Denney; Misty C. Bentz; Paul Martini; S. G. Sergeev; Shai Kaspi; Ying Zu; C. S. Kochanek; Benjamin J. Shappee; K. Z. Stanek; C. Araya Salvo; Thomas G. Beatty; Jonathan C. Bird; D. J. Bord; G. A. Borman; Xiao Che; Chien-Ting J. Chen; Seth A. Cohen; Matthias Dietrich; V. T. Doroshenko; Yu. S. Efimov; N. Free; I. Ginsburg; C. B. Henderson; K. Horne; Ashley L. King; K. Mogren; M. Molina
We present the first results from a detailed analysis of photometric and spectrophotometric data on the narrow-line Seyfert 1 (NLS1) galaxy Mrk 335, collected over a 120 day span in the fall of 2010. From these data we measure the lag in the He II {lambda}4686 broad emission line relative to the optical continuum to be 2.7 {+-} 0.6 days and the lag in the H{beta}{lambda}4861 broad emission line to be 13.9 {+-} 0.9 days. Combined with the line width, the He II lag yields a black hole mass M{sub BH} = (2.6 {+-} 0.8) Multiplication-Sign 10{sup 7} M{sub Sun }. This measurement is consistent with measurements made using the H{beta}{lambda}4861 line, suggesting that the He II emission originates in the same structure as H{beta}, but at a much smaller radius. This constitutes the first robust lag measurement for a high-ionization line in an NLS1 galaxy and supports a scenario in which the He II emission originates from gas in virial motion rather than outflow.
The Astrophysical Journal | 2017
Bryce Croll; Paul A. Dalba; Andrew Vanderburg; Jason D. Eastman; Saul Rappaport; John DeVore; Allyson Bieryla; Philip S. Muirhead; Eunkyu Han; David W. Latham; Thomas G. Beatty; Robert A. Wittenmyer; Jason T. Wright; John Asher Johnson; Nate McCrady
We present multiwavelength, ground-based follow-up photometry of the white dwarf WD 1145+017, which has recently been suggested to be orbited by up to six or more short-period, low-mass, disintegrating planetesimals. We detect nine significant dips in flux of between 10% and 30% of the stellar flux in our ∼32 hr of photometry, suggesting that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the asymmetric transits that we observe, we confirm that the transit egress is usually longer than the ingress, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals are unclear, but at least one object, and likely more, have orbital periods of ∼4.5 hr. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high-precision photometry also displays low-amplitude variations, suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. We compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions, the radius of single-size particles in the cometary tails streaming behind the planetesimals must be ∼0.15 μm or larger, or ∼0.06 μm or smaller, with 2σ confidence.
The Astronomical Journal | 2015
Allyson Bieryla; Karen A. Collins; Thomas G. Beatty; Jason D. Eastman; Robert J. Siverd; Joshua Pepper; B. Scott Gaudi; Keivan G. Stassun; Caleb Cañas; David W. Latham; Lars A. Buchhave; Roberto Sanchis-Ojeda; Joshua N. Winn; Eric L. N. Jensen; John F. Kielkopf; Kim K. McLeod; Joao Gregorio; Knicole D. Colón; R. A. Street; Rachel Ross; Matthew T. Penny; Samuel N. Mellon; Thomas E. Oberst; Benjamin J. Fulton; Ji Wang; Perry L. Berlind; Michael L. Calkins; Gilbert A. Esquerdo; D. L. DePoy; Andrew Gould
United States. National Aeronautics and Space Administration (Origins Program Grant NNX11AG85G)
The Astrophysical Journal | 2014
Bradley M. Peterson; C. J. Grier; K. Horne; Richard W. Pogge; Misty C. Bentz; G. De Rosa; K. D. Denney; Paul Martini; S. G. Sergeev; Shai Kaspi; Takeo Minezaki; Ying Zu; C. S. Kochanek; Robert J. Siverd; B. J. Shappee; C. Araya Salvo; Thomas G. Beatty; Jonathan C. Bird; D. J. Bord; G. A. Borman; Xiao Che; Chien-Ting Chen; Seth A. Cohen; M. Dietrich; V. T. Doroshenko; T. Drake; Yu. S. Efimov; N. Free; I. Ginsburg; C. B. Henderson
A large reverberation mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hbeta 4861 and He II 4686 and a central black hole mass measurement of about 10 million solar masses, consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hbeta measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hbeta-emitting broad-line region and the AGN luminosity. It was necessary to detrend the continuum and Hbeta and He II 4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.
The Astrophysical Journal | 2013
Joshua Pepper; Robert J. Siverd; Thomas G. Beatty; B. Scott Gaudi; Keivan G. Stassun; Jason D. Eastman; Karen A. Collins; David W. Latham; Allyson Bieryla; Lars A. Buchhave; Eric L. N. Jensen; Mark Manner; K. Penev; Justin R. Crepp; Phillip A. Cargile; Saurav Dhital; Michael L. Calkins; Gilbert A. Esquerdo; Perry L. Berlind; Benjamin J. Fulton; R. A. Street; Bo Ma; Jian Ge; Ji Wang; Qingqing Mao; Alexander J. W. Richert; Andrew Gould; D. L. DePoy; John F. Kielkopf; J. L. Marshall
We report the discovery of KELT-3b, a moderately inflated transiting hot Jupiter with a mass of 1.477 +0.066 −0.067 MJ, radius of 1.345 ± 0.072 RJ, and an orbital period of 2.7033904 ± 0.000010 days. The host star, KELT-3, is a V = 9.8 late F star with M∗ = 1.278 +0.063 −0.061 M� , R∗ = 1.472 +0.065 −0.067 R� , Teff = 6306 +5049 K, log(g) = 4.209 +0.033 −0.031, and [Fe/H] = 0.044 +0.080 −0.082 , and has a likely proper motion companion. KELT-3b is the third transiting exoplanet discovered by the KELT survey, and is orbiting one of the 20 brightest known transiting planet host stars, making it a promising candidate for detailed characterization studies. Although we infer that KELT-3 is significantly evolved, a preliminary analysis of the stellar and orbital evolution of the system suggests that the planet has likely always received a level of incident flux above the empirically identified threshold for radius inflation suggested by Demory & Seager.
Nature | 2017
B. Scott Gaudi; Keivan G. Stassun; Karen A. Collins; Thomas G. Beatty; George Zhou; David W. Latham; Allyson Bieryla; Jason D. Eastman; Robert J. Siverd; Justin R. Crepp; Erica J. Gonzales; Daniel J. Stevens; Lars A. Buchhave; Joshua Pepper; Marshall C. Johnson; Knicole D. Colón; Eric L. N. Jensen; Joseph E. Rodriguez; V. Bozza; Sebastiano Calchi Novati; G. D’Ago; Mary Thea Dumont; Tyler Ellis; Clement Gaillard; Hannah Jang-Condell; David H. Kasper; A. Fukui; Joao Gregorio; Ayaka Ito; John F. Kielkopf
The amount of ultraviolet irradiation and ablation experienced by a planet depends strongly on the temperature of its host star. Of the thousands of extrasolar planets now known, only six have been found that transit hot, A-type stars (with temperatures of 7,300–10,000 kelvin), and no planets are known to transit the even hotter B-type stars. For example, WASP-33 is an A-type star with a temperature of about 7,430 kelvin, which hosts the hottest known transiting planet, WASP-33b (ref. 1); the planet is itself as hot as a red dwarf star of type M (ref. 2). WASP-33b displays a large heat differential between its dayside and nightside, and is highly inflated–traits that have been linked to high insolation. However, even at the temperature of its dayside, its atmosphere probably resembles the molecule-dominated atmospheres of other planets and, given the level of ultraviolet irradiation it experiences, its atmosphere is unlikely to be substantially ablated over the lifetime of its star. Here we report observations of the bright star HD 195689 (also known as KELT-9), which reveal a close-in (orbital period of about 1.48 days) transiting giant planet, KELT-9b. At approximately 10,170 kelvin, the host star is at the dividing line between stars of type A and B, and we measure the dayside temperature of KELT-9b to be about 4,600 kelvin. This is as hot as stars of stellar type K4 (ref. 5). The molecules in K stars are entirely dissociated, and so the primary sources of opacity in the dayside atmosphere of KELT-9b are probably atomic metals. Furthermore, KELT-9b receives 700 times more extreme-ultraviolet radiation (that is, with wavelengths shorter than 91.2 nanometres) than WASP-33b, leading to a predicted range of mass-loss rates that could leave the planet largely stripped of its envelope during the main-sequence lifetime of the host star.