Joshua S Kaminker
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joshua S Kaminker.
Genome Biology | 2002
Joshua S Kaminker; Casey M. Bergman; Brent Kronmiller; Joseph W. Carlson; Robert Svirskas; Sandeep Patel; Erwin Frise; David A. Wheeler; Suzanna E. Lewis; Gerald M. Rubin; Michael Ashburner; Susan E. Celniker
BackgroundTransposable elements are found in the genomes of nearly all eukaryotes. The recent completion of the Release 3 euchromatic genomic sequence of Drosophila melanogaster by the Berkeley Drosophila Genome Project has provided precise sequence for the repetitive elements in the Drosophila euchromatin. We have used this genomic sequence to describe the euchromatic transposable elements in the sequenced strain of this species.ResultsWe identified 85 known and eight novel families of transposable element varying in copy number from one to 146. A total of 1,572 full and partial transposable elements were identified, comprising 3.86% of the sequence. More than two-thirds of the transposable elements are partial. The density of transposable elements increases an average of 4.7 times in the centromere-proximal regions of each of the major chromosome arms. We found that transposable elements are preferentially found outside genes; only 436 of 1,572 transposable elements are contained within the 61.4 Mb of sequence that is annotated as being transcribed. A large proportion of transposable elements is found nested within other elements of the same or different classes. Lastly, an analysis of structural variation from different families reveals distinct patterns of deletion for elements belonging to different classes.ConclusionsThis analysis represents an initial characterization of the transposable elements in the Release 3 euchromatic genomic sequence of D. melanogaster for which comparison to the transposable elements of other organisms can begin to be made. These data have been made available on the Berkeley Drosophila Genome Project website for future analyses.
Genome Biology | 2002
Suzanna E. Lewis; Smj Searle; Nomi L. Harris; M Gibson; Vivek Iyer; John Richter; C Wiel; Leyla Bayraktaroglu; Ewan Birney; Madeline A. Crosby; Joshua S Kaminker; Beverley B. Matthews; Se Prochnik; Christopher D. Smith; Jl Tupy; Gerald M. Rubin; S Misra; Christopher J. Mungall; Michele Clamp
The well-established inaccuracy of purely computational methods for annotating genome sequences necessitates an interactive tool to allow biological experts to refine these approximations by viewing and independently evaluating the data supporting each annotation. Apollo was developed to meet this need, enabling curators to inspect genome annotations closely and edit them. FlyBase biologists successfully used Apollo to annotate the Drosophila melanogaster genome and it is increasingly being used as a starting point for the development of customized annotation editing tools for other genome projects.
Genome Biology | 2002
Sima Misra; Madeline A. Crosby; Christopher J. Mungall; Beverley B. Matthews; Kathryn S. Campbell; Pavel Hradecky; Yanmei Huang; Joshua S Kaminker; Gillian Millburn; Simon E Prochnik; Christopher D. Smith; Jonathan L Tupy; Eleanor J Whitfield; Leyla Bayraktaroglu; Benjamin P. Berman; Brian Bettencourt; Susan E. Celniker; Aubrey D.N.J. de Grey; Rachel Drysdale; Nomi L. Harris; John Richter; Susan Russo; Andrew J. Schroeder; ShengQiang Shu; Mark Stapleton; Chihiro Yamada; Michael Ashburner; William M. Gelbart; Gerald M. Rubin; Suzanna E. Lewis
BackgroundThe recent completion of the Drosophila melanogaster genomic sequence to high quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78% of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve genomic annotations. We made the annotation process more rigorous by inspecting each gene visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences.ResultsAlthough the number of predicted protein-coding genes in Drosophila remains essentially unchanged, the revised annotation significantly improves gene models, resulting in structural changes to 85% of the transcripts and 45% of the predicted proteins. We annotated transposable elements and non-protein-coding RNAs as new features, and extended the annotation of untranslated (UTR) sequences and alternative transcripts to include more than 70% and 20% of genes, respectively. Finally, cDNA sequence provided evidence for dicistronic transcripts, neighboring genes with overlapping UTRs on the same DNA sequence strand, alternatively spliced genes that encode distinct, non-overlapping peptides, and numerous nested genes.ConclusionsIdentification of so many unusual gene models not only suggests that some mechanisms for gene regulation are more prevalent than previously believed, but also underscores the complex challenges of eukaryotic gene prediction. At present, experimental data and human curation remain essential to generate high-quality genome annotations.
Genome Biology | 2002
Roger A. Hoskins; Christopher D. Smith; Joseph W. Carlson; A. Bernardo Carvalho; Aaron L. Halpern; Joshua S Kaminker; Cameron Kennedy; Christopher J. Mungall; Beth A. Sullivan; Granger Sutton; Jiro C. Yasuhara; Barbara T. Wakimoto; Eugene W. Myers; Susan E. Celniker; Gerald M. Rubin; Gary H. Karpen
BackgroundMost eukaryotic genomes include a substantial repeat-rich fraction termed heterochromatin, which is concentrated in centric and telomeric regions. The repetitive nature of heterochromatic sequence makes it difficult to assemble and analyze. To better understand the heterochromatic component of the Drosophila melanogaster genome, we characterized and annotated portions of a whole-genome shotgun sequence assembly.ResultsWGS3, an improved whole-genome shotgun assembly, includes 20.7 Mb of draft-quality sequence not represented in the Release 3 sequence spanning the euchromatin. We annotated this sequence using the methods employed in the re-annotation of the Release 3 euchromatic sequence. This analysis predicted 297 protein-coding genes and six non-protein-coding genes, including known heterochromatic genes, and regions of similarity to known transposable elements. Bacterial artificial chromosome (BAC)-based fluorescence in situ hybridization analysis was used to correlate the genomic sequence with the cytogenetic map in order to refine the genomic definition of the centric heterochromatin; on the basis of our cytological definition, the annotated Release 3 euchromatic sequence extends into the centric heterochromatin on each chromosome arm.ConclusionsWhole-genome shotgun assembly produced a reliable draft-quality sequence of a significant part of the Drosophila heterochromatin. Annotation of this sequence defined the intron-exon structures of 30 known protein-coding genes and 267 protein-coding gene models. The cytogenetic mapping suggests that an additional 150 predicted genes are located in heterochromatin at the base of the Release 3 euchromatic sequence. Our analysis suggests strategies for improving the sequence and annotation of the heterochromatic portions of the Drosophila and other complex genomes.
PLOS Computational Biology | 2006
Mark Yandell; Christopher J. Mungall; Christopher D. Smith; Simon E Prochnik; Joshua S Kaminker; George Hartzell; Suzanna E. Lewis; Gerald M. Rubin
We have used the annotations of six animal genomes (Homo sapiens, Mus musculus, Ciona intestinalis, Drosophila melanogaster, Anopheles gambiae, and Caenorhabditis elegans) together with the sequences of five unannotated Drosophila genomes to survey changes in protein sequence and gene structure over a variety of timescales—from the less than 5 million years since the divergence of D. simulans and D. melanogaster to the more than 500 million years that have elapsed since the Cambrian explosion. To do so, we have developed a new open-source software library called CGL (for “Comparative Genomics Library”). Our results demonstrate that change in intron–exon structure is gradual, clock-like, and largely independent of coding-sequence evolution. This means that genome annotations can be used in new ways to inform, corroborate, and test conclusions drawn from comparative genomics analyses that are based upon protein and nucleotide sequence similarities.
Nature Neuroscience | 2002
Joshua S Kaminker; Jude Canon; Iris Salecker; Utpal Banerjee
Drosophila photoreceptor neurons (R cells) project their axons to one of two layers in the optic lobe, the lamina or the medulla. The transcription factor Runt (Run) is normally expressed in the two inner R cells (R7 and R8) that project their axons to the medulla. Here we examine the relationship between Run and the ubiquitously expressed nuclear protein Brakeless (Bks), which has previously been shown to be important for axon termination in the lamina. We report that Bks represses Run in two of the outer R cells: R2 and R5. Expression of Run in R2 and R5 causes axonal mistargeting of all six outer R cells (R1–R6) to the inappropriate layer, without altering expression of cell-specific developmental markers.
Genome Biology | 2002
Christopher J. Mungall; S Misra; Benjamin P. Berman; Joe Carlson; Erwin Frise; N Harris; B Marshall; S Shu; Joshua S Kaminker; Se Prochnik; Christopher D. Smith; E Smith; Jl Tupy; C Wiel; Gerald M. Rubin; Suzanna E. Lewis
We describe here our experience in annotating the Drosophila melanogaster genome sequence, in the course of which we developed several new open-source software tools and a database schema to support large-scale genome annotation. We have developed these into an integrated and reusable software system for whole-genome annotation. The key contributions to overall annotation quality are the marshalling of high-quality sequences for alignments and the design of a system with an adaptable and expandable flexible architecture.
Genome Biology | 2002
Sima Misra; Madeline A. Crosby; Chris Mungall; Beverley B. Matthews; Kathryn S. Campbell; Pavel Hradecky; Yanmei Huang; Joshua S Kaminker; Gillian Millburn; Simon E Prochnik; Christopher D. Smith; Jonathan L Tupy; Eleanor J Whitfield; Leyla Bayraktaroglu; Benjamin P. Berman; Brian Bettencourt; Susan E. Celniker; Aubrey D.N.J. de Grey; Rachel Drysdale; Nomi L Harris; John Richter; Susan Russo; Andrew J. Schroeder; ShengQiang Shu; Mark Stapleton; Chihiro Yamada; Michael Ashburner; William M. Gelbart; Gerald M. Rubin; Suzanna E. Lewis
BackgroundThe recent completion of the Drosophila melanogaster genomic sequence to high quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78% of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve genomic annotations. We made the annotation process more rigorous by inspecting each gene visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences.ResultsAlthough the number of predicted protein-coding genes in Drosophila remains essentially unchanged, the revised annotation significantly improves gene models, resulting in structural changes to 85% of the transcripts and 45% of the predicted proteins. We annotated transposable elements and non-protein-coding RNAs as new features, and extended the annotation of untranslated (UTR) sequences and alternative transcripts to include more than 70% and 20% of genes, respectively. Finally, cDNA sequence provided evidence for dicistronic transcripts, neighboring genes with overlapping UTRs on the same DNA sequence strand, alternatively spliced genes that encode distinct, non-overlapping peptides, and numerous nested genes.ConclusionsIdentification of so many unusual gene models not only suggests that some mechanisms for gene regulation are more prevalent than previously believed, but also underscores the complex challenges of eukaryotic gene prediction. At present, experimental data and human curation remain essential to generate high-quality genome annotations.
Genome Biology | 2002
Sima Misra; Madeline A. Crosby; Christopher J. Mungall; Beverley B. Matthews; Kathryn S. Campbell; Pavel Hradecky; Yanmei Huang; Joshua S Kaminker; Gillian Millburn; Simon E Prochnik; Christopher D. Smith; Jonathan L Tupy; Eleanor J Whitfield; Leyla Bayraktaroglu; Benjamin P. Berman; Brian Bettencourt; Susan E. Celniker; Aubrey D.N.J. de Grey; Rachel Drysdale; Nomi L. Harris; John Richter; Susan Russo; Andrew J. Schroeder; ShengQiang Shu; Mark Stapleton; Chihiro Yamada; Michael Ashburner; William M. Gelbart; Gerald M. Rubin; Suzanna E. Lewis
BackgroundThe recent completion of the Drosophila melanogaster genomic sequence to high quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78% of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve genomic annotations. We made the annotation process more rigorous by inspecting each gene visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences.ResultsAlthough the number of predicted protein-coding genes in Drosophila remains essentially unchanged, the revised annotation significantly improves gene models, resulting in structural changes to 85% of the transcripts and 45% of the predicted proteins. We annotated transposable elements and non-protein-coding RNAs as new features, and extended the annotation of untranslated (UTR) sequences and alternative transcripts to include more than 70% and 20% of genes, respectively. Finally, cDNA sequence provided evidence for dicistronic transcripts, neighboring genes with overlapping UTRs on the same DNA sequence strand, alternatively spliced genes that encode distinct, non-overlapping peptides, and numerous nested genes.ConclusionsIdentification of so many unusual gene models not only suggests that some mechanisms for gene regulation are more prevalent than previously believed, but also underscores the complex challenges of eukaryotic gene prediction. At present, experimental data and human curation remain essential to generate high-quality genome annotations.
Development | 2001
Joshua S Kaminker; Rajan Singh; Tim Lebestky; Huajun Yan; Utpal Banerjee